Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A field experiment was conducted to evaluate the response of ten sesame genotypes to different levels of soil water in terms of contents of proline, soluble carbohydrates, carotenoids, and activities of catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APX). Plants were grown under three irrigation levels, including irrigation at 55 % (control), 75, and 85 % depletion of soil available water. Field test plots were a two-way factorial arranged in a randomized complete block design with three replications. Under control level of irrigation, the most and the least grain yields were achieved for genotypes Ultan (2,519 kg/ha) and Isfahan1 (1,311 kg/ha), respectively. Grain yield was decreased in some genotypes under 75 % and in all genotypes under 85 % depletion of available water. Based on percentage reduction in grain yield under both 75 and 85 % depletion of soil available water, Isfahan4, Borazjan, Isfahan1, Ahvaz, Ardestan, and Shiraz were recognized as relatively tolerant and Ultan, Shahreza, Kal, and Markazi were identified as relatively sensitive to water stress. The activities of antioxidant enzymes and the contents of carotenoids, proline, and soluble carbohydrates in leaves were increased in most genotypes under stress conditions, and the magnitudes of the increases were greater in the tolerant than in the sensitive genotypes. The results of this experiment showed that the stress-induced increase of antioxidant enzymes and the contents of the compatible solutes in leaves were related to the tolerance of sesame genotypes.
Various methods are available for improving drought resistance in turfgrasses. Several studies have reported the application of plant growth regulators as an effective method for reducing drought stress effects. A factorial experiment based on a randomized complete block design with three replications was performed in 2011 and 2012 to investigate the effects of the gibberellic acid (GA) inhibitors trinexapac-ethyl (TE) and drought stress on the physiological responses of wheatgrass (Agropyron desertorum) and tall fescue (Festuca arundinacea) to drought stress. The foliage of wheatgrass and tall fescue were sprayed with 1.95 ml L-1 TE at 0.113 % a.i. 14 days prior to and at the beginning of the drought stress. Both Tetreated and untreated plants were placed to well-watered and no water circumstances for 45 days in field conditions. Results indicated that drought stress reduced turf quality (color, density, and uniformity), relative water content (RWC), and total chlorophyll content, but increased proline content, electrolyte leakage (EL), malondialdehyde (MDA) and soluble sugar content (SSC) in both species. Superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD) activities in the two turfgrass species initially increased transiently, but declined subsequently. TE application increased SOD, APX, POX, and CAT activities, especially under drought stress conditions. Correlation analysis showed that there were significantly positive correlation between turf quality and RWC and negative correlation between turf quality and proline content, EL, MDA and SSC in both species. The use of TE seems to have enhanced resistance to drought stress in both species by improving proline, SSC and antioxidant activities.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.