Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 46

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The paper introduces methods of dynamic games for automation of ship control in the collision situation, the game control processes in marine navigation and the fundamental mathematical model of the game ship control. First, state equations, control and state constraints and then control goal function in the form of payments : the integral payment and the final one, have been defined. Multi-stage positional , and multi-step matrix, non-cooperative and cooperative, game and optimum control algorithms for a collision situation, have been presented. The considerations have been illustrated with an exemplary computer simulation of algorithms to determine a safe own ship’s trajectory in the process of passing the ships encountered in Kattegat Strait
The paper presents a mathematical model of a positional game of the safe control of a vessel in collision situations at sea, containing a description of control, state variables and state constraints as well as sets of acceptable ship strategies, as a multi-criteria optimisation task. The three possible tasks of multi-criteria optimisation were formulated in the form of non-cooperative and cooperative multi-stage positional games as well as optimal non-game controls. The multicriteria control algorithms corresponding to these tasks were subjected to computer simulation in Matlab/Simulink software based on the example of the real navigational situation of the passing of one’s own vessel with eighteen objects encountered in the North Sea
The paper presents the application of the theory of deterministic sensitivity control systems for sensitivity analysis implemented to game control systems of moving objects, such as ships, airplanes and cars. The sensitivity of parametric model of game ship control process in collision situations have been presented. First-order and k-th order sensitivity functions of parametric model of process control are described. The structure of the game ship control system in collision situations and the mathematical model of game control process in the form of state equations, are given. Characteristics of sensitivity functions of the game ship control process model on the basis of computer simulation in Matlab/Simulink software have been presented. In the end , have been given proposals regarding the use of sensitivity analysis to practical synthesis of computer-aided system navigator in potential collision situations
The paper introduces application of selected methods of a game theory for automation of the processes of moving marine objects, the game control processes in marine navigation and the base mathematical model of game ship control. State equations, control and state constraints have been defined first and then control goal function in the form of payments – the integral payment and the final one. Multi-stage positional and multi-step matrix, non-cooperative and cooperative, game and optimal control algorithms in a collision situation has been presented. The considerations have been illustrated as an examples of a computer simulations mspg.12 and msmg.12 algorithms to determine a safe own ship’s trajectory in the process of passing ships encountered in Kattegat Strait
The paper introduces the application of the theory of deterministic sensitivity control systems for sensitivity analysis taking place in game control systems of moving objects, such as ships. The sensitivity of parametric model of game ship control process and game control in collision situations - sensitivity to changes in its parameters have been presented. First-order and k-th order sensitivity functions of parametric model of the process and game control are described. The structure of the game ship control system in collision situations and the mathematical model of game control process in the form of state equations are given. Characteristics of sensitivity functions of the model and game ship control process on the base of computer simulation in Matlab/Simulink software have been presented. At the end are given proposals regarding the use of sensitivity analysis to practical synthesis of computer-aided system navigator in potential collision situations
The purpose of the article is to present the goal of optimization of transport and logistics processes, followed by literature review in the field of optimization methods. The optimization methods were categorized and the most commonly used methods were listed. The tasks of static and dynamic optimization were formulated. An example of the single-criterion static and dynamic optimization and multi-criteria game optimization are given
The paper presents the problem of synthesis of time-optimal ship steering in the process of a safe passing oftjnoving objects, using information from an anti-collision system ARPA. A model of the process has been formulated and the optimal trajectory of a ship has been analytically determined using Pontriagin’s bounded maximum principle. The steering algorithm may be applied in the construction of both appropriate training simulators for navigating officers and also for various options of the basic module of the'ARPA anti-collision system.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.