Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
To reveal the impact of irrigation management on the release and leaching of soil metals (Cu, Zn, Pb, Cr, and Cd), deep percolation rate and metals contents in soil solutions were observed in rice fields with nonflooding controlled irrigation (NFI) and flooding irrigation (FI) treatments. The contents of Cu and Cr in the deep solutions were safe according to the environmental quality standard for groundwater, but contents of other metals might lead to groundwater contamination, especially for Cd. The release of metals in surface soil was increased for NFI because the wetting-drying cycles in NFI fields resulted in less reluctant and high decomposition and mineralization of soil organic matter in surface soil, and consequently enhanced the release of soil metals into solutions. Seasonal metals leaching losses in NFI fields were 44.9-53.8% lower than in FI, due to the large reduction in both deep seepage rates and metals concentrations in deep soil solutions. Higher release of metals in NFI surface soils might lead to higher bioavailability of micronutrients (Cu and Zn) to crops, but higher risks in toxic metals (Pb, Cr, and Cd) uptakes.
To understand the underlying mechanism for plasticity in root to shoot ratio (R/S) in response to drought stress, two rice cultivars, Zhenshan97 (drought susceptible) and IRAT109 (drought resistant), were grown hydroponically, and R/S, carbohydrate concentration and partitioning, and activities of enzymes for sucrose conversion in seedlings exposed to drought stress condition (DS) imposed by polyethylene glycol 6000 were investigated. The R/S significantly increased under DS in comparison with that under well-watered condition. The proportion of dry matter and soluble sugar of roots markedly increased under DS. The R/S was negatively correlated with proportion of soluble sugar in stems, and positively with the proportions of soluble sugar and starch in roots. Drought stress condition significantly increased leaf sucrose-phosphate synthase (EC 2.4.1.14) activity and root acid and neutral/ alkaline invertase (EC 3.2.1.26) activity. The R/S was positively correlated with leaf sucrose-phosphate synthase and root acid invertase activity, and negatively with leaf sucrose synthase activity in the cleavage direction. Our results indicate that the increase in R/S in response to DS is closely associated with the higher proportion of dry matter and soluble sugar in roots, and this occurs via an increase in leaf sucrose-phosphate synthase and root invertase activity, and thus more sucrose is available for transport from leaves to roots.
Habitat quality for many wildlife populations has a spatial component related to the arrangement of habitat elements across large geographic areas. With remote sensing and GIS technology, this paper presents an approach to calculate Habitat Suitability Index (HSI) for Giant Pandas to evaluate the habitat quality. In this paper, a buffer of a given distance (30 km or more) to the Giant Panda distribution area estimated in three national surveys (1974, 1989 and 2002), which is located in Sichuan, Gansu and Shanxi provinces in western China, was used as the study area. In order to study different species group’s habitat quality, the study area is divided into five parts: the Qinling mountain systems, located in the southeast in Shanxi province, the Minshan mountain systems, located in the south in Gansu province and northwest in Sichuan province, the Qionglai mountain systems, the Xiangling mountain systems and the Liangshan mountain systems, located in the west of Sichuan province, conforming to the five big Giant Panda species groups. Three physical environmental factors (elevation, slope and aspect), one ecological factor (vegetation distribution) and several human-influence factors (distances to highways, general roads, inhabitants and rural areas) are selected as the influence factors to calculate HSI. Each factor was reclassified by grid-cell (30 × 30 m per cell) to the suitability index scale from 0 to 1 based on habitat affinities before final calculation. After analyzing the HSI values on the most Giant Panda distribution area, 0.0144 was considered as the threshold habitat quality. Then, HSI was calculated for five mountain systems for three periods conforming to three national surveys (1974, 1989 and 2002). Several benefits to the approach can be highlighted. Firstly, HSI can be used as the standard to evaluate the quality of Giant Panda habitat. Secondly, by using HSI maps from 1974, 1989 and 2002, we can see that the Giant Panda habitat was the largest in 1974, and was then reduced much before 1989. However, by 2002, it had recovered to some extent, which conforms to the habitat data from the three national surveys. Thirdly, the habitat changes in the five mountain systems examined in the study are different. Finally, nature reserves play an important role in the protection of Giant Panda habitat; there are more suitable habitats in nature reserves than non-protected areas.
Cycads are an ancient lineage of plants that originated in the Permian, which are vital to the interpretation of plant ecology. The evidence in the fossil records indicates that the morphological and anatomical features of cycads are remarkably similar to the extant taxa, which has been instrumental in our understanding the connections between the early origins of seed plants and their present-day counterparts. The cycad ecosystem is an important vegetation type throughout geological time. Research on the ecological function of the cycad plays a significant role in the study of evolutionary ecology. In this study, we investigated the biomass, productivity and total carbon storage (total of vegetation, litter, and soil carbon) of cycad (Cycas panzhihuaensis L. Zhou et S.Y. Yang) ecosystems in the National C. panzhihuaensis Reserve of China (latitude 26°37′, longitude 101°35′, at 1635 m altitude) by applying the site-standard tree sampling harvest.Cycads are considered to be rare and endangered species, and are in the list of key protected wild plants in the world. The National C. panzhihuaensis Reserve is in Southwestern China, which area approximately 1358 ha, growing approximately 20 000 C. panzhihuaensis individuals. 20 sample plots, each 5 × 5 m were established in the spring of 2006. The mean height of cycads within the stand was 0.44 m and the mean basal diameter was 23.2 cm. The biomass and productivity data for other communities was compiled from references published over the past 20 years throughout China. The biomass and productivity of cycad ecosystems (8.102 ± 6.880 t C ha⁻¹ and 1.183 ± 0.975 t C ha⁻¹ yr⁻¹, respectively) are smaller than tree fern (Alsophila spinulosa (Wall. ex Hook.) R. M. Tryon) or gymnosperm (Pinaceae, Cupressaceae or Taxodiaceae for representative) ecosystems. The community biomass of Pinaceae-, Cupressaceae- or Taxodiaceae-dominated ecosystems are 6.8, 5.4, and 5.3 times larger than the cycad ecosystem, respectively. The productivity of each is 2.3, 2.8 and 3.8 times larger than the cycad ecosystem. Cycad is an ancient dioecious plant. However, the results show that the differences between the biomass of male and female cycads, as well as the productivity, are not significant.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.