Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In our study we used c-Fos protein to identify whether cells containing calretinin (CR) in the rat piriform cortex are engaged in the response to stress stimulation and to find out how this expression changes during maturation (PC). The material consisted of Wistar strain rats of between 0 and 120 days of age divided into 9 groups. Each group consisted of 5 experimental and 3 control rats. Animals from the experimental groups were exposed to the open field test throughout 10 minutes. The control animals were kept in a home cage. In all age-related control rats weak c-Fos immunoreactivity was observed. Our results showed that cells containing c-Fos following an acute open field test were observed predominantly in layers II and III of the PC just after birth. Their number then increased and stabilised on P30. We had already observed immature CR-ir cells at birth. In the 4th week of life these neurons achieved maturity. Their number increased to P90 and decreased in older animals. CR-ir neurons were localised mainly in layer II and to a lesser degree in layers III and I of the PC. Double immunostaining c-Fos/CR revealed that the level of co-localisation was low. Only small differences were observed between the anterior and posterior parts of the PC. In the anterior part a higher number of CR-ir neurons was found. The difference in the level of co-localisation between the anterior and posterior parts was age-related and differentiated. Our results may suggest that during maturation CR-ir neurons of the piriform cortex are not the main population engaged in response to the open field test.
A type of stress stimulation and age are claimed to affect the expression of brain-derived neurotrophic factor (BDNF) and its receptor - tyrosine kinase B (TrkB) in the hippocampal regions differentially. This study aimed to explore the influence of chronic (15 min daily for 21 days) forced swim stress (FS) exposure on the BDNF and TrkB containing neurons in the hippocampal CA1, CA3 pyramidal cell layers and dentate gyrus (DG) granule cell layer in juvenile (P28) and aged (P360) rats. An immunofluorescence (-ir) method was used to detect BDNF-ir and TrkB-ir cells. Under chronic FS exposure, in the group of juvenile rats a significant decrease in the density of BDNF immunoreactive neurons was observed in CA1 and DG (p<0.001), unlike CA3, where it remained unaltered just as the density of TrkB-ir cells in CA1 and DG, but in CA3 the number of TrkB-ir cells was found to grow (p<0.05) in comparison with control groups. After chronic FS exposure of aged (P360) rats, the density of BDNF-ir and TrkB-ir cells did not decline in any of the subregions of the hippocampus. In all subfields of the hippocampus, the denseness of BDNF-positive neurons was significantly higher in P360 stressed group, compared with P28 stressed group, but the density of TrkB-ir fell more markedly in P360 than in P28. In conclusion, chronic FS stress influenced the number of BDNF and TrkB immunoreactive neurons only in juvenile animals. The age of rats tested in the chronic forced swim test was a decisive factor determining changes in the density of BDNF-ir and TrkB-ir in the hippocampal structures.
The hippocampus plays a role in new learning, memory and emotion and is a component of the neuroanatomical stress circuit. The structure is involved in terminating hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress and attenuates stress responses by shutting off this axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor TrkA following acute and chronic open-field stress were studied in CA1-CA3 and the DG of the hippocampus. The material consisted of 21 male adult rats divided into three groups: nonstressed (control) animals and rats exposed to acute (15 min once) and chronic (15 min daily for 21 days) aversive stimulation (open-field exposure). The brains were stained with use of immunohistochemical methods for c-Fos, NGF or TrkA. In the animals exposed to acute open-field stress the number of c-Fos-, TrkAand NGF-ir cells was higher in all the structures studied than in the control animals. However they were differentiated only in c-Fos immunoreactivity. In the rats exposed to chronic open-field stress the number of c-Fos-ir cells in the structures of the hippocampal formation studied was smaller than in rats exposed to acute stress and was comparable to that in the control group. No differences were observed between the groups exposed to acute and chronic stress in the number of TrkA-ir cells in the structures under investigation. The number of NGF-ir neurons in CA1 and CA2 was lower after exposure to chronic than after exposure to acute stress but was still higher than that in the control group. Our findings indicate that neurons of CA1-CA3 and the DG are engaged in the stress response after acute as well as chronic open-field exposure. This is probably related to the important role of the hippocampus in processing new spatial information as well as in the habituation processes, although these appear to have different mechanisms.
The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high‑light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non‑stressed rats, acute FS caused a significant increase in the density of BDNF‑ir neurons in CA2 and CA3, while acute HL‑OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF‑ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL‑OF proved to be a stressor that induces an increase in the density of BDNF‑ir pyramidal neurons, which was probably connected with up‑regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF‑ir cells in hippocampus is concerned, chronic FS or HL‑OF was not an aggravating factor for rats in the ontogenetic periods studied.
This study aimed to investigate the influence of acute (a single 15 min) and chronic (15 min daily for 21 days) exposure to forced swim (FS) test on nerve growth factor (NGF)/c-Fos cells in hypothalamic paraventricular (PV) and supraoptic (SO) nuclei, the central (CeA) and medial (MeA) amygdaloid nuclei and CA3-hippocampus in juvenile (P28) and aged (P360) rats. The double-immunofluorescence (-ir) method was used to detect NGF-ir and c-Fos-ir cells. The amount of NGF/c-Fos-ir cells in relation to all NGF-ir cells is shown as a percentage. In the acute FS test an increase in NGF/c-Fos-ir cells (P<0.05) was observed in all studied structures of juvenile rats and in the PV and SO of the aged individuals. After chronic FS stress, the NGF/c-Fos-ir ratio remained unaltered (except in the SO) in P28, but it increased (P<0.05) in all investigated regions in P360 compared with the controls. The findings may reflect the state of molecular plasticity within the limbic hypothalamic-pituitary-adrenocortical (HPA) axis in both age groups, yet the phenomenon of habituation in NGF/c-Fos-ir after chronic FS exposure was observed only in juvenile animals.
Proinflammatory cytokine - interleukin ip (IL-ip) plays an important role in stress reactions in the structures of limbic system. The impact of stress on IL-ip may depend on the ontogenetic age. The study examined the influence of acute and chronic exposure to forced swim (FS) or high-light open-field (HL-OF) stressors on neurons containing IL-ip. Double immunofluorescence staining was used to reveal the density of IL-ip/NeuN (NeuN - a neuronal nuclear marker) - immunoreactive (ir) cells in the amygdaloid central (CeA) and medial (MeA) nuclei, which are closely involved in the regulation of emotional stressors and hypothalamic-pituitary-adrenal axis (HPA) activation. Adult (P90; P - postnatal day), middle-aged (P360), and aged (P720) male Wistar Han rats were used in these experiments. We observed an age-dependent increase in the basal density of IL-ip/NeuN-ir cells in CeA and MeA in P90 vs. P360 and P360 vs. P720 rats. Neither acute nor chronic FS caused significant changes in the density of IL-ip-ir neurons in any of the investigated nuclei in P90, P360, and P720 rats as compared with the non-stressed groups. However, chronic but not acute HL-OF caused a marked increase in the density of IL-ip/NeuN-ir cells in the CeA and MeA of P360 rats and in MeA of the P720 animals. Moreover, chronic HL-OF led to an increase in the density of IL-ip-ir neurons in relation to acute HL-OF in the CeA and MeA of both P360 and P720 rats. Our results may indicate the involvement of IL-ip neurons in the development of ageing processes in CeA and MeA. Furthermore, our results point out that chronic HL-OF is an aggravating factor that induces an increase in the density of IL-ip/NeuN-ir cells in the MeA and/or CeA of middle-aged and aged rats. The increase is possibly due to insufficient control of the HPA axis associated with involutional ageing processes and seems to be a common denominator of the ageing process and stress.
The aim of this study was to investigate the influence of two periods of life, namely P28 and P360, on the changes in interleukin-1beta (IL-1β) immunoreactivity (-ir) in the hippocampus (CA1, CA3, DG) and amygdala (central-CeA, medial-MeA) caused by acute and repeated open field (OF), or by forced swim (FS) exposition. Rats were divided into groups: non-stressed, exposed to acute (one-time for 15 min) and chronic stressors (21 days for 15 min daily). We found IL-1β-ir in the control group to be higher in P360 than in P28. In P28, under OF and FS exposure, IL-1β-ir in the CeA remained unaltered but increased in the MeA and in the hippocampus after acute and chronic stress. In P360 no changes were observed in the IL-1β-ir level after acute and chronic stimulation. These data demonstrate that only the levels of IL-1β-ir in juvenile rat brains are affected by FS and OF. Additionally, there was no significant difference between FS and OF stimulation in IL-1β-ir. (Folia Morphol 2009; 68, 3: 119–128)
Changes in NGF release during stressful events have been associated with the activation of neurons expressing NGF receptors. This study examined the influence of acute stress-induced stimulation on NGF/c-Fos colocalization in the following limbic regions: the paraventricular (PV) nucleus of the hypothalamus, medial (MeA) nucleus of the amygdala, and CA3 hippocampus. Juvenile (P21) and aged rats (P360) were exposed to a 15-minute acute open field (OF) test. Double immunofluorescence staining, used to detect NGF-ir and c-Fos-ir cells, revealed a higher percentage of NGF/c-Fos-ir neurons in the P21 control group than in the P360 control group. Under OF acute stimulation, a statistically significant (p < 0.05) increase of NGF/c-Fos level in CA3 of juvenile animals and in PV and CA3 of the aged rats was observed. These observations indicate that the investigated structures in both age groups show a different response to acute OF stimulation. Acute OF affects the levels of NGF/c-Fos more significantly in aged rats. (Folia Morphol 2009; 68, 3: 129–134)
The amygdala is a critical component of the neuroanatomical stress circuit. It plays a role in the generation of responses to emotional stimuli. The central (CeA) and medial (MeA) amygdaloid nuclei are implicated in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor, TrkA, following acute and chronic open-field stress were studied in the CeA and MeA nuclei of the amygdala. The material consisted of 21 male adult rats divided into three groups: non-stressed (control) animals, rats exposed to acute (once only lasting 15 min) and chronic (15 min daily over 21 days) aversive stimulation (open-field exposure). The brains were stained with the use of immunohistochemical methods for c-Fos, NGF or TrkA. In the control rats c-Fos-, TrkA- and NGF-ir cells were observed in the nuclei studied, but the quantity varied, being moderate or high (immunoreactive to TrkA and NGF) or low (immunoreactive to c-Fos). In the animals exposed to acute open-field stress the number of c-Fos-ir, NGF-ir and TrkA-ir cells in the nuclei under examination was differentiated but higher than that in the control animals. In the animals exposed to chronic open-field stress the number of c-Fos-ir cells in the nuclei studied was similar and was smaller than those in animals exposed to acute stress. The number of TrkA-ir neurons was also lower in comparison to that in animals exposed to acute stress. However, no significant differences in the number of NGF-ir cells were observed between the groups exposed to acute and chronic stress. Diverse expression of c-Fos protein following both acute and chronic stress stimulation may prove the functional heterogeneity of the amygdaloid nuclei investigated. The decrease observed in both c-Fos- and TrkA-ir in MeA (only TrkA in CeA) of animals exposed to chronic stress may indicate the phenomenon of habituation.
The immunoreactivity (ir) for c-Fos, NGF and TrkA, following an acute and chronic open field stress, were studied in the periventricular zone of rat hypothalamus. Adult rats were divided into three groups: control, exposed to acute (single exposure -15 minutes) and chronic (multiple exposures - 15 minutes daily for 21 days) open field stress. In the control rats neurons immunoreactive to c-Fos, TrkA and NGF were found. The number of TrkA- and NGF-ir cells was high, whereas this of c-Fos-ir ones was low. In animals exposed to acute open field stress the number of c-Fos-ir cells in the examined nuclei varied, however it was much higher than that in the control animals. The number of TrkA-ir neurons in all the studied nuclei was also higher than that in the control animals, but the increase of the number of NGF-ir neurons was not observed in supraoptic nucleus. In the animals exposed to chronic open field stress the number of c-Fos-ir cells was increased in comparison to that in the control rats. After chronic stress exposure the number of TrkA-ir neurons in supraoptic nucleus remained high in comparison to that in animals exposed to acute stress, whereas it was decreased in other studied nuclei. No significant differences in the number of NGF-ir cells were observed between the groups exposed to the acute and chronic stress. Observed decrease of c-Fos- and TrkA-ir in the studied nuclei in the animals suffering from chronic stress in comparison with the acute one may indicate the occurrence of habituation phenomenon. This phenomenon does not concern NGF-ir.
In our study we used c-Fos protein (as a marker of cellular activity) to identify whether cells containing parvalbumin (PV) in the piriform cortex (PC) are engaged in the response to stress stimulation and to discover how this expression changes during maturation. The material consisted of Wistar rats of postnatal (P) ages between 0 and 120 days divided into 9 groups: P0, P4, P7, P10, P14, P21, P30, P90, P120. Each group consisted of 5 experimental and 3 control animals. Rats of the experimental groups were exposed to the “open field test” throughout 10 minutes. The control animals were kept in a home cage. Our results showed that c-Fos activity in the open field test was observed in layers II and III of PC after birth. It then increased and stabilised on P30. In the second week of life PV-positive cells were also observed in those layers. These achieved maturity in the 4th week of life. After this time basket-like structures appeared but the level of PV/c-Fos co-localisation was low. Only small differences were observed between the anterior and posterior parts of PC. In the anterior part a higher number of PV-positive neurons, neuropil threads, and basket-like structures and a larger degree of PV/c-Fos co-localisation were observed. Our results suggested that during maturation PV cells are not directly activated in response to stress stimuli but PV neurons via their numerous endings influence the activation of c-Fos-positive cells predominantly in the anterior part of PC.
It is postulated that stress differentially affects interleukin-ip (IL-ip) during ontogenetic life. This study examined the influence of chronic exposure to forced swim (FS) stress or high-light open-field (HL-OF) stress on interleukin-ip (IL-ip). The total level of IL-ip protein was assessed by Western blot analysis of hippocampal extracts. Double immunofluorescence staining was used to reveal the percentage of IL-ip/NeuN (NeuN - neuronal marker) cells in the CA1, CA3 and dentate gyrus (DG) hippocampal subfields. Juvenile (P28; P - postnatal day) and middle-aged (P360) rats were used in the experiment. The research showed no significant differences in IL-ip protein levels between P28 and P360 non-stress rats. However, a substantial increase in the percentage of IL-ip-ir neurons in the CAi, CA3 and DG in P360 rats was observed. Chronic FS had no significant influence on IL-ip expression in the hippocampus or on the percentage of IL-ip-ir neurons in CAi, CA3 and DG hippocampal subfields in either age group. During HL-OF, the IL-ip level was significantly increased in the hippocampus of P28 and P360 rats, whereas a marked increase in the percentage of IL-ip-ir neurons in the CAi, CA3 and DG hippocampal areas occurred only in P360 animals. These results indicate that chronic HL-OF stimulation was the factor inducing changes in the IL-ip protein levels in P28 and P360 rats and in the percentage of IL-ip/NeuN-ir cells in the hippocampus of P360 animals.
Our intention in the present study was to ascertain whether NO-producing cells in the basolateral complex (BLC) and paracapsular intercalated nerve cell groups (Ip) of the amygdala are activated in the open field (OF) test. The material consisted of 8 adult rat brains. The OF test was applied throughout 10 min and 90 min before the death of the animals. The brain sections were double stained using the antibodies against c-Fos (marker of neuronal activation) and against nitric oxide synthase (NOS — marker of NO-producing cells). The neurons containing NOS and those revealing c-Fos activity constituted distinct populations within both the BLC and Ip but NOS-immunoreactive fibres often surrounded the c-Fos-immunoreactive neurons. Our results suggest that (1) neurons of the basolateral complex of the amygdala and paracapsular intercalated islands are involved but probably not crucial for the open field stress response and (2) NOS-immunoreactive cells in the BLC and Ip are not activated after OF exposure.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.