Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 47

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The uterine cervix-projecting neurons located in the lumbar paravertebral ganglia were identified by retrograde tracing. These contained immunoreactivity to TH and DBH. No immunoreactivity to GAL, VIP and SP was found in the neurons. Extirpation of the uterus reduced the expression of TH and induced the expression of GAL in the neurons. Expression of other substances studied was unchanged.
The presence and distribution of vasoactive intestinal polypeptide (VIP) receptor VPAC1 was studied in the ovary, oviduct and uterus (uterine horn and cervix) of the domestic pig using methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of VPAC1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the level of proteins by the detection of 46 kDa protein band in immunoblot. Immunohistochemical stainings revealed the cellular distribution of VPAC1 receptor protein. In the ovary it was present in the wall of arterial blood vessels, as well as in the ovarian follicles of different stages. In the tubular organs the VPAC1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of VPAC1 receptor in the tissues of the porcine female reproductive tract what clearly shows the possibility of influence of VIP on the porcine ovary, oviduct and uterus.
The expression of 3 types of peroxide dismutase (SOD1, SOD2 and SOD3) was studied with Real-Time PCR in the colonic wall of domestic pig suffering from swine dysentery. The expression of enzymes was studied separately in the mucosa and the muscular membrane. It was found that in the mucosa the expression of SOD1 (cytoplasmic) did not change, while the levels of expression of mitochondrial SOD2 and extracellular SOD3 were raised in inflamed colon. More dramatic changes were seen in the muscular mebrane where expression of SOD1 rose twice, this of SOD2 rose ca. 5-fold and the expression of SOD3 rose dramatically, even 30-fold.The obtained data are contradictory to findings in other types of colonic inflammation, which were studied either in the whole colonic wall, or in mucosa alone. The results show a very strong reaction of antioxidant systems in the muscular membrane in the enteritis.
The presence of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), substance P (SP) and calcitonin gene-related peptide (CGRP) was studied in neurons and nerve fibers of the porcine otic ganglion. ChAT-positive neurons were very numerous while VAChT-positive nerve cells were moderate in number. The number of neurons containing NPY and VIP was lower and those containing SOM, GAL, SP or CGRP were observed as scarce, or single nerve cells. The above mentioned substances (except SOM) were present in nerve fibers of the ganglion. ChAT- and VAChT-positive nerve fibers were numerous, while the number of nerve terminals containing NPY, VIP and SP was lower. GAL- and CGRP-positive nerve fibers were scarce.
The aim of the study was to investigate the expression of biologically active substances in intramural neurons supplying the ileum and large intestines (caecum, spiral colon and descending colon) in normal (control) pigs and in pigs suffering from dysentery. Higher numbers of galanin (GAL)-, vasoactive intestinal polypeptide (VIP)- and calcitonin gene-related peptide (CGRP)-immunoreactive (-IR) neuronal somata were found in the myenteric (MP), and outer (OSP) and inner submucus (ISP) intestinal nerve plexuses in dysenteric pigs as compared to control animals. Additionally, the density of substance P (SP)- and VIP-IR nerve fibres in the studied tissues was higher in dysenteric than in controls animals, whereas the number of CGRP-IR nerve fibres remained unchanged, or even was lower in the experimental pigs. The number of SP-IR nerve cell bodies in the MP of all intestinal segments studied was comparable in dysenteric and control pigs. An increased number of SP-IR perikarya were observed in OSP and ISP of the ileum, cecum and centripetal turns; whereas the number of SP-IR somata was lower in the plexuses of centrifugal turns and the descending colon. The number of nerve fibres found in all layers of the intestinal wall was lower in dysenteric pigs. Each of the intramural plexuses in all the intestinal segments studied contained less than 1% of neuropeptide Y (NPY)-IR neurones and this characteristic was similar both in dysenteric and control pigs. The number of NPY-IR nerve fibres increased slightly in the plexuses as well as in both muscular layers and mucosa.
Recent decades has brought significant advances in our knowledge of the chemical coding and function of enteric neurons. Calcium ions are important second messenger involved in many aspects of neuron physiology. In the present study, we analyzed immunohistochemically the presence of calcium binding proteins (calretinin and calbindin) in various subpopulations of enteric neurons from the ovine duodenum. Ten percent of submucous neurons were immunoreactive (IR) to calretinin. The presence of calretinin was not detected in myenteric neurons. Calretinin-expressing nerve fibres were found in both myenteric and submucous ganglia, between the circular and longitudinal smooth muscle layers and in the lamina muscularis mucosae. Calretinin-IR submucous neurons did not exhibit the presence of SP, NPY and VIP. Co-localization of calretinin and serotonin was found only in a small number of submucous neurons. Calbindin was expressed in 35% of myenteric neurons and in 60% of submucous neurons. Nerve fibres containing calbindin were localized in myenteric and submucous ganglia where they frequently formed basket-like formations. Calbindin-positive nerve fibres emerging from myenteric ganglia ran between the circular and longitudinal smooth muscle layers. Immunoreactivity to calbindin was also visualized in the lamina muscularis mucosae, around mucosal glands and blood vessels. None of calbindin-IR myenteric neurons revealed immunoreactivity to SP, NPY, VIP and serotonin. Virtually all calbindin-expressing submucous neurons were SP-positive. In moderate numbers of submucous perikarya, co-incidence of calbindin and NPY, calbindin and VIP or calbindin and serotonin was observed. We conclude that in the ovine duodenum, the expression of calretinin and calbindin is species specific. Co-localization studies and distribution patterns indicate that in the duodenum of the sheep, calretinin and calbindin may be present in several functional subclasses of enteric neurons.
Immunohistochemical characteristics of neurones innervating the porcine uterus located in paracervical ganglia were studied with a combination of retrograde fluorescent tracing and immunofluorescence. Retrograde fluorescent tracer Fast Blue (FB) was injected into the uterine horn and uterine cervix. The presence of biologically active substances, tyrosine hydroxylase (TH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), galanin (GAL), Met-enkephalin-Arg-GlyLeu (MEAGL) and calcitonin gene-related peptide (CGRP) was studied in FBpositive neurones localised in paracervical ganglia. FB-positive neurones containing TH, NPY, VIP and MEAGL were numerous, while those containing CGRP were scarce. The results pointed to some species-related differences in immunohistochemical coding of neurones of paracervical ganglion responsible for uterus innervation.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.