Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The accuracy of bathymetric maps, especially in the coastal zone, is very important from the point of view of safety of navigation and transport. Due to the continuous change in shape of the seabed, these maps are fast becoming outdated for precise navigation. Therefore, it is necessary to perform periodical bathymetric measurements to keep them updated on a current basis. At present, none of the institutions in Poland (maritime offices, Hydrographic Office of the Polish Navy) which are responsible for implementation of this type of measurements has at their disposal a hydrographic vessel capable of carrying out measurements for shallow waters (at depths below 1 m). This results in emergence of large areas for which no measurement data have been obtained and, consequently, the maps in the coastal zones are rather unreliable.The article presents the concept of bathymetric measurements for shallow waters with the use of an autonomous, unmanned sur vey vessel (ASV/USV). For this pur pose, the authors modernized a typical ASV/USV unit with standard radio remote control system to the fully autonomous mode. As part of the modernization, the route planning software was created. The developed software works based on, alternatively, GNSS measurements of the coastline, or satellite images. The system was supplemented by an own autopilot (adapted for flying drones). Moreover, the method of controlling electric motors was changed thanks to the use of own electronic circuit.The modernized ASV/USV measuring system was verified by performing bathymetric measurements of the retention reservoir in Gdansk, Poland. Then, the obtained measurement data were used to create a digital bottom model and a bathymetric map of the reservoir
A possibility of utilising the GPS system for navigation and transport are fundamentally dependent on the accuracy in positioning. Two fundamental factors decisive for its value are the values of the User Range Error (URE) and Dilution of Precision (DOP), strictly related to the number of satellites forming the constellation. The nominal constellation of GPS satellites consists of 24 units which gives a possibility of identification of coordinates all over the globe. In the last few years, however, the nominal number of satellites in the constellation was much higher, and the URE value has been constantly increasing. The authors of the paper try to estimate the impact of the changing number of GPS satellites on accuracy of position coordinates with a variable URE value. Mathematical model for estimating geometrical indicators’ value, utilising data derived from the almanac files has been presented. Following a drawn-up algorithm and calculations made with Mathcad software, the authors carried out a comparative analysis of mean daily values of DOP indicators for a variable number of satellites included in the GPS constellation in the years 2001-2013. Then, the authors have established representative values of Two Distance Root Mean Square Error (2drms) 2D and 3D, and calculated a percentage increase of accuracy in the period under discussion
This paper is the fourth in a series of publications presenting the process of installation, testing and long-term assessment of the navigational parameters of the Polish DGPS system. This series of publications intends to present – to the general public – the accomplishments of teams of Polish scientists who have been working for years to make the DGPS the main positioning system used in the Polish sea areas. A considerable part of the materials presented in this paper has never been published.The article presents changes in the position accuracy of the Polish DGPS system over 20 years. Both dynamic tests performed on vessels as well as static measurements campaigns were analysed. The publication contains selected results achieved in its installation and testing in 1995–1997 supplemented with the results of studies conducted in the years: 2006, 2010, 2014, 2017. During this period the position accuracy increased from 2–8 m (1996) to approx. 1–2 m (2010) due to three reasons: turning – off the Selective Availability (2000), technical modernization of reference stations (2010) and continuous – over many years – reducing GPS signal-in-space pseudorange errors, which results in increased position accuracy in all GPS augmentation systems
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.