Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Microbial extradiol dioxygenases have a great potential in bioremediation, but their structure is very sensitive to various environmental and chemical agents. Immobilization techniques make the enzyme properties’ improvement possible. This is the first report of the usage of κ-carrageenan as a matrix for the immobilization of catechol 2,3-dioxygenase. The storage stability of entrapped catechol 2,3-dioxygenase from Stenotrophomonas maltophilia KB2 in κ-carrageenan hydrogel at 4ºC was found up to 14 days, while the free enzyme lost its activity within 24 hours. The immobilization of dioxygenase decreased the optimum temperature by 10ºC, while both soluble and immobilized enzyme showed similar pH properties. The Km, Vmax, and Hill constant values for the immobilized enzyme were 0.17 μM, 106.68 mU, and 1.00, respectively. The immobilized catechol 2,3-dioxygenase showed higher activity against 3-methylcatechol, hydroquinone, and tetrachlorohydroquinone than the soluble enzyme. Immobilization of catechol 2,3-dioxygenase protected the enzyme from inhibition and enhanced its resistance to inactivation during catalysis.
Naproxen is a one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) entering the environment as a result of high consumption. For this reason, there is an emerging need to recognize mechanisms of its degradation and enzymes engaged in this process. Planococcus sp. S5 is a gram positive strain able to degrade naproxen in monosubstrate culture (27%). However, naproxen is not a sufficient growth substrate for this strain. In the presence of benzoate, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid or vanillic acid as growth substrates, the degradation of 21.5%, 71.71%, 14.75% and 8.16% of naproxen was observed respectively. It was shown that the activity of monooxygenase, hydroxyquinol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxyegnase in strain S5 was induced after growth of the strain with naproxen and 4-hydroxybenzoate. Moreover, in the presence of naproxen activity of gentisate 1,2-dioxygenase, enzyme engaged in 4-hydroxybenzoate metabolism, was completely inhibited. The obtained results suggest that monooxygenase and hydroxyquinol 1,2-dioxygenase are the main enzymes in naproxen degradation by Planococcus sp. S5.
In recent years the increased consumption of diclofenac, a biologically active compound that is toxic to organisms and persistent to biodegradation, has resulted in its presence in the environment. This is the first report on the biotransformation of diclofenac by a pure bacterial strain, Raoultella sp. DD4, which is able to transform 0.6 mg/L of diclofenac in 28 days. Additionally, strain DD4 is more resistant to diclofenac than other tested organisms. The estimated value for EC50 for this strain is 1.95 g/L. This is approximately five-fold higher than the value of microbial toxic concentration MTCavg (0.416 g/L). Moreover, genotoxicity studies have indicated that diclofenac is not a mutagenic compound.
The purpose of this study was purification and characterization of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2, enzyme that catabolises phenol and its derivatives through the initial hydroxylation to catechols. The enzyme requires NADH and FAD as a cofactors for activity, catalyses hydroxylation of a wide range of monocyclic phenols, aromatic acids and dihydroxylated derivatives of benzene except for catechol. High activity of this monooxygenase was observed in cell extract of strain KB2 grown on phenol, 2-methylphenol, 3-metylphenol or 4-methylphenol. Ionic surfactants as well as cytochrome P450 inhibitors or 1,4-dioxane, acetone and n-butyl acetate inhibited the enzyme activity, while non-ionic surfactants, chloroethane, ethylbenzene, ethyl acetate, cyclohexane, and benzene enhanced it. These results indicate that the phenol monooxygenase from Stenotrophomonas maltophilia strain KB2 holds great potential for bioremediation.
 This study aimed at characterization of a new catechol 2,3-dioxygenase isolated from a Gram-positive bacterium able to utilize phenol as the sole carbon and energy source. Planococcus sp. strain S5 grown on 1 or 2 mM phenol showed activity of both a catechol 1,2- and catechol 2,3-dioxygenase while at a higher concentrations of phenol only catechol 2,3-dioxygenase activity was observed. The enzyme was optimally active at 60°C and pH 8.0. Kinetic studies showed that the Km and Vmax of the enzyme were 42.70 µM and 329.96 mU, respectively. The catechol 2,3-dioxygenase showed the following relative meta-cleavage activities for various catechols tested: catechol (100%), 3-methylcatechol (13.67%), 4-methylcatechol (106.33%) and 4-chlorocatechol (203.80%). The high reactivity of this enzyme towards 4-chlorocatechol is different from that observed for other catechol 2,3-dioxygenases. Nucleotide sequencing and homology search revealed that the gene encoding the S5 catechol 2,3-dioxygenase shared the greatest homology with the known genes encoding isoenzymes from Gram-negative Pseudomonas strains.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.