Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The content of alkaloids and flavonoids and the yield of herb were analyzed in greater celandine cultivar ‘Cynober’ during six following phases: spring rosette formation, the beginning of flowering, full bloom, green fruit, seed harvest, fall rosette formation. Yield of celandine herb was different at the investigated phases and in years of cultivation. The highest yield of herb was observed at the beginning of flowering, then a decrease was noticed, up to the phase of seed harvest, when the yield grown up. The lowest yield of celandine herb was obtained in last phase – fall rosette formation, except 2011 when the lowest yield was in spring rosette formation. The average content of alkaloids was the highest in phase of green fruit (1.097%), while in 2012, the highest content was reached in phase of fall rosette formation – 1.200%. The lowest content of alkaloids was obtained in herb of the beginning of flowering (0.608%) in both years. The mean content of flavonoids was from 0.310% (the beginning of flowering) to 0.522% (seed harvest) and was the same in both years. The stable high content of total alkaloids and flavonoids and individual alkaloids was noticed in phase of fall rosette. Our results suggest that seed maturity is the best time for celandine herb harvest regarding the herb yield and content of alkaloids and flavonoids.
Pimpinella saxifraga s.l. has been used for medicinal purposes for a long time. The root is a part of medicinal properties composed by essential oils in about 0.4%. The composition of these essential root oils consists of about sixty chemicals. The aim of the current experiment was assessing the analytical method of chromatographic profile utilizing essential oil of Pimpinella saxifraga. This essential oil was isolated with use of Deryng apparatus according to Polish Pharmacopoeia. The method for assessing the chromatographic profile of the essential oil was split-up gas chromatographic capillary column. The quantitative composition of the essential oil was calculated with use of method of normalization. The identity and the compositions of the essential oil from Pimpinella saxifraga roots was analyzed on Clarus 500 gas chromatograph equipped with capillary columns with flame ionization detector (FID), automatic dispenser and computer with Total Chrom Navigator software Perkin Elmer. Chromatographic system was characterized by range of retention time, area peaks, tailing factor and compounds’ separation. This method of volatile oil substance marking was validated following the ICH standards, by its precision, accuracy and linearity.
A concentration of two phenylethanoids in the roots of two species: Rhodiola kirilowii and rosea were compared, aqueous and hydroalcoholic extracts from those plants were also analyzed. In order to determine the content of p-tyrosol and salidroside, the ultra performance liquid chromatography connected with a tandem mass spectrometry (UPLC-ESI MS/MS, Waters) was used. The obtained results shown that content of measured phenylethanoids depends on Rhodiola species. Roots of R. kirilowii contain more p-tyrosol, while R. rosea roots are reacher in salidroside. Our results indicate that the application of UPLC MS/MS method allows to determine the phenylethanoids content in tested samples with satisfactory precision.
9
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Determination of lotaustralin in Rhodiola species

51%
In our research, the concentration of lotaustralin in the roots of two species Rhodiola kirilowii and Rhodiola rosea were compared. Aqueous and hydroalcoholic extracts from those plants were analyzed too. To determine the content of this compound the ultra performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS, Waters) was used. The obtained results showed that the content of measured lotaustralin depends on the species of Rhodiola. R. rosea roots are the richer source of lotaustralin then R. kirilowii. The same situation was observed in the extracts. A hydroalcoholic extract from R. rosea contains up to 135.276 mg of lotaustralin in 100 g of dry powdered material. In the case of R. kirilowii extracts, an aqueous extract contained more lotaustralin (74.791 mg/100 g of dry powdered material) then a hydroalcoholic extract.
10
51%
The aim of our study were qualitative and quantitative analyses of two polyphenolic acids: chlorogenic and gallic acids. These compounds were determined in two species of Rhodiola: R. kirilowii and R. rosea. After collecting plants, aqueous and hydroalcoholic extracts were prepared. In order to identify analysed polyphenolic compounds ultra performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS, Waters) was used. Gallic acid is commonly found in the roots of these plants. Aqueous extract in both species is a rich source of gallic acid. The UPLC-MS/MS studies allow to use this analytical method for determination of polyphenolic acids accordance with the requirements of ICH. Chromatographic method developed by our team is more precise then previously published.
The aim of the study was the identification and quantitative analysis of phenylpropanoid compounds in the roots of Rhodiola species. Rosavin, rosarin and rosin were determined in the roots of R. kirilowii and R. rosea from the field cultivation, Institute of Natural Fibres and Medicinal Plants. For the quantitative analysis, the ultra performance liquid chromatography - tandem mass spectrometry (UPLC-ESI MS/MS, Waters) was used. The results showed differences in the quantitative and qualitative assessments of these two species. In the root of R. kirilowii the presence of phenylpropanoids was not confirmed. In R. rosea the most common phenylpropanoid was rosavin (0.022%). The UPLC-MS/MS studies allowed to use this analytical method for determination of phenylpropanoids in the accordance with the requirements of ICH.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.