Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The present study has examined the level of total IgA and antigen-specific IgA antibodies in serum and bile in various inbred strains of mice infected with Trichinella spiralis. These strains of mice differ in the speed at which they expel the adult worms from the gut. BALB/c and CBA mice expel adult worms faster than C3H and C57BL/6 mice. However, the CBA strain of mice is more resistant to the establishment of an initial infection of T. spiralis than BALB/c mice. While total serum IgA and bile sIgA concentrations correlated with the time course of the expulsion of adult worms, there was no similar correlation between IgA concentrations and the intensity of T. spiralis infection during the muscle phases of infection in any of the strains of mice investigated. Specific IgA antibodies in sera and sIgA antibodies in bile were measured by ELISA in C57BL/6 mice using crude somatic L1 muscle larvae (AgL1) and crude adult worm (AgAd) antigens. A pronounced increase in sIgA antibodies to AgL1 antigen was found by day 9 of infection in bile. However, a gradual increase in IgA in serum to AgAd antigen was observed from 6 till 24 DAI. Specific IgA response in serum to AgAd was much higher than to AgL1 and, in contrast the sIgA response in bile, was more pronounced to AgL1 than to AgAd. This result suggests that bile may also provide a valuable source of sIgA.
The occurrence of four L-alanine:2-oxoglutarate aminotransferase (AOAT) isoenzymes (AOAT-like proyeins): alanine aminotransferase 1 and 2 (AlaATl and AlaAT2, EC 2.6.1.2) and L-glutamate:glyoxylate aminotransferase 1 and 2 (GGAT1 and GGAT2, EC 2.6.1.4) was demonstrated in Arabidopsis thaliana leaves. These enzymes differed in their substrate specificity, susceptibility to pyridoxal phosphate inhibitors and behaviour during molecular sieving on Zorbax SE-250 column. A difference was observed in the electrostatic charge values at pH 9.1 between GGAT1 and GGAT2 as well as between AlaAT1 and AlaAT2, despite high levels of amino acid sequence identity (93 % and 85 %, respectively). The unprecedented evidence for the monomeric structure of both AlaAT1 and AlaAT2 is presented. The molecular mass of each enzyme estimated by molecular sieving on Sephadex G-150 and Zorbax SE-250 columns and SDS/PAGE was approx-mately 60 kDa. The kinetic parameters: Km (Ala) = 1.53 mM, Km (2-oxoglutarate) = 0.18 mM, kcat = 124.6 s⁻¹, kcat/Km = 8.1 x 10⁴ M⁻¹-s⁻¹ of AlaAT1 were comparable to those determined for other AlaATs iso-ated from different sources. The two studied GGATs also consisted of a single subunit with molecular mass of 47.3-70 kDa. The estimated Km values for L-glutamate (1.2 mM) and glyoxylate (0.42 mM) in the transamination catalyzed by putative GGAT1 contributed to indentification of the enzyme. Based on these results we concluded that each of four AOAT genes in Arabidopsis thaliana leaves expresses different AOAT isoenzyme, functioning in a native state as a monomer.
Leptin, 16- kDa protein produced and secreted from white adipocytes is known to regulate food intake and energy expenditure. Leptin receptors have been detected in the pancreas and it has been shown that systemic application of this protein diminished postprandial pancreatic secretion. Leptin is also produced in the stomach and released into the gastrointestinal lumen but the implication of luminal leptin in the regulation of pancreatic enzyme secretion has not been elucidated. The aim of our study was to evaluate the effects of intraduodenal (i.d.) leptin administration on pancreatic enzyme secretion and to assess the involvent of afferent nerves and CCK in above effects. The secretory studies were carried out on anaesthetized Wistar rats with acute pancreatic fistulae. Leptin was administered to the animals at doses of 0.1 1.0 or 10.0 µg/kg i.d. Tarazepide (2.5 mg/kg i.d.), a CCK1 receptor antagonist, was given to the rats prior to the application of leptin. Rats with capsaicin deactivated sensory nerves were used in part of the study. Samples of pancreatic juice were taken at 15 min intervals to measure the volume flow and protein and amylase concentrations. CCK plasma level was measured by radioimmunoassay (RIA) following administration of leptin to the rats. Intraduodenal administration of leptin (1.0 or 10.0 µg/kg) to the fasted rats significantly and dose-dependently increased pancreatic protein and amylase outputs. Pancreatic secretory responses to leptin were totally abolished by prior capsaicin deactivation of sensory nerves or by pretreatment of the rats with tarazepide. Under basal conditions plasma CCK level averaged about 15.46 ± 1,4 pg/ml. Exogenous leptin, given i.d. at doses of 0.1 1.0 or 10.0 µg/kg i.d. to the rats with intact or capsaicin-deactivated sensory nerves resulted in dose-dependent rise of plasma CCK level, reaching the highest value at the dose of 10.0 µg/kg i.d. We conclude that leptin given i.d. stimulates pancreatic enzyme secretion and this effect could be related to the stimulation of CCK release and activation of duodeno-pancreatic reflexes.
Lipopolysaccharide (LPS, endotoxin) is the component of the cellular wall of Gram negative bacteria. Endotoxemia (sepsis) could produce multiorgan failure and in the early period of life LPS are responsible for the changes of metabolism and for the reduction of protein synthesis. The influence of neonatal endotoxemia on the pancreas at adults has not been investigated yet. The aim of this study was to assess the pancreatic exocrine function in the adult rats which have been subjected, in the neonatal period of life, to chronic LPS pretreatment. LPS from E. coli or S. typhi at doses of 5, 10 or 15 mg/kg-day was administered intraperitoneally (i.p.) to the suckling rats (30 g) during 5 consecutive days. Three months later these animals (300 g) were equipped with pancreato-biliary fistulae for the in vivo secretory study. Amylase release from isolated pancreatic acini obtained from these rats was also assessed. Pancreatic tissue samples were taken for histological assessment and for the determination of gene expression for CCK1 receptor by RT-PCR. Pancreatic amylase secretions stimulated by caerulein or by diversion of pancreatic-biliary juice to the exterior (DBPJ) was significantly, and dose-dependently reduced in the adult rats which have been subjected in infancy to chronic pretreatment with LPS from E. coli or S. typhi, as compared to the untreated control. In these animals basal secretion was unaffected. In the rats pretreated with LPS in the suckling period of life caerulein-induced amylase release from isolated pancreatic acini was significantly decreased, as compared to the untreated with LPS control. This was accompanied by dose-dependent reduction of mRNA signal for CCK1 receptor on pancreatic acini. Neonatal endotoxemia failed to affect significantly pancreatic morphology as well as plasma amylase level in the adult rats. We conclude that neonatal endotoxemia reduces gene expression for CCK1 receptor and could produce impairment of the exocrine pancreatic function at adult age.
14
Content available remote

Endotoxemia in newborn rats attenuates acute pancreatitis at adult age

52%
Bacterial endotoxin (lipopolysaccharide, LPS), at high concentration is responsible for sepsis, and neonatal mortality, however low concentration of LPS protected the pancreas against acute damage. The aim of this study was to investigate the effect of exposition of suckling rats to LPS on the course of acute pancreatitis at adult age. Suckling rat (30-40g) received intraperitoneal (i.p.) injection of saline (control) or LPS from Escherichia coli or Salmonella typhi (5, 10 or 15 mg/kg-day ) during 5 consecutive days. Two months later these rats have been subjected to i.p. caerulein infusion (25 µg/kg) to produce caerulein-induced pancreatitis (CIP). The following parameters were tested: pancreatic weight and morphology, plasma amylase and lipase activities, interleukin 1ß (IL-1 ß), interleukin 6 (IL-6), and interleukin 10 (IL-10) plasma concentrations. Pancreatic concentration of superoxide dysmutase (SOD) and lipid peroxidation products; malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) have been also measured. Caerulein infusion produced CIP in all animals tested, that was confirmed by histological examination. In the rats, which have been subjected in the neonatal period of life to LPS at doses 10 or 15 mg/kg-day x 5 days, all manifestations of CIP have been reduced. In these animals acute inflammatory infiltration of pancreatic tissue and pancreatic cell vacuolization have been significantly diminished. Also pancreatic weight, plasma lipase and a-amylase activities, as well as plasma concentrations of IL-1ß and IL-6 have been markedly decreased, whereas plasma anti-inflammatory IL-10 concentration was significantly increased in these animals as compared to the control rats, subjected in the infancy to saline injection instead of LPS. Caerulein-induced fall in pancreatic SOD concentration was reversed and accompanied by significant reduction of MDA + 4 HNE in the pancreatic tissue. The effects of LPS derived from E.coli or S.typhi were similar. Pretreatment of suckling rats with LPS at dose of 10 mg/kg-day x 5 days resulted in the most prominent attenuation of acute pancreatitis at adult age, whereas LPS at dose of 5 mg/kg-day x 5 days given to the neonatal rats failed to affect significantly acute pancreatitis induced in these animals 2 months later. We conclude that: 1/ Prolonged expositon of suckling rats to bacterial endotoxin attenuated acute pancreatitis induced in these animals at adult age. 2/ This effect could be related to the increased concentration of antioxidative enzyme SOD in the pancreatic tissue and to the modulation of cytokines production in these animals.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.