Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 56

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In this study, biochar (BC), triple superphosphate (TSP), and TSP+BC amendments were utilized for remediation of Cd, Pb, and Cu co-contaminated agricultural soils. The toxicity characteristic leaching procedure (TCLP), the European Community Bureau of Reference (BCR), X-ray diffraction, and scanning electron microscopy-energy dispersive spectrometer techniques were employed to evaluate the effectiveness of the three types of amendments. After soil amendment, pH, heavy metal concentrations in TCLP extracts, and BCR speciation of heavy metals showed significant changes. The application of BC, TSP, and TSP+BC to co-contaminated soils slightly increased soil pH; decreased Pb, and Cu leachability in the TCLP extracts; and lowered the concentrations of the acid-soluble fraction of heavy metals. The application of TSP+BC mixture at the same dose as BC and TSP produced the greatest reduction in available heavy metal concentration. The optimum mass ratio of TSP to BC was 1:3. Overall, the TSP+BC mixture was highly effective in immobilizing Cd, Pb, and Cu in co-contaminated agricultural soils. The experimental results demonstrate that the rational application of the TSP and BC provides benefits of retrenching phosphorus resources, decreasing phosphorus pollution, and lowering the feed costs of debasing soil remediation treatments.
We report the discovery of Erenlagus anielae, a new genus and species of stem lagomorph from the lower part of the Middle Eocene Irdin Manha Formation at the Huheboerhe locality, Erlian Basin, Nei Mongol, China. The remains consist of isolated teeth; however, the material includes all loci except the incisors and P2. The new lagomorph is characterized by a small size and high degree of unilateral hypsodonty comparable to that of Aktashmys and slightly higher than that observed in the coeval and co-occurring Strenulagus. Further, it shows advanced root fusion, which exceeds even that in Gobiolagus. Although phylogenetic relationships of the Eocene lagomorphs from Asia are still not fully resolved, the dental characters of Erenlagus anielae suggest that it is most closely related to ʻLushilagusʼ danjingensis from the Middle Eocene of Henan, China and Aktashmys montealbus from the late Early Eocene of Kyrgyzstan. This stratigraphically well-constrained finding represents one of the lagomorph genera that appeared in the Eocene Glires paleobiodiversity reservoir, the Erlian Basin in Nei Mongol.
In order to study the impact of Pb, Cd, Zn, and Cu released by Pb-Zn tailings on soil enzymes and soil properties involving soil carbon and nitrogen cycle processes, 32 soil samples were collected from 2 different types of agricultural fields (one for growing corn and one for growing rice) contaminated by Pb-Zn tailings close to Sidi village in southwestern China. The results revealed that the paddy fields were seriously contaminated by Pb-Zn tailings compared with cornfields. Under the Pb-Zn tailings contamination, the population of fungi and actinomycetes as well as the activities of the soil enzymes (urease, invertase, and cellulase) in cornfields were significantly higher than those in the paddy fields. In addition, the results from path analysis showed that urease, invertase, and acid phosphatase were negatively correlated with DTPA-extractable Cd, Pb, and Zn (the direct path coefficients were -0.336, -0.314, and -0.591, respectively). Soil microorganisms and enzyme activities involving soil organic carbon and nitrogen decomposition and stabilization were decreased due to the toxic Pb-Zn tailings. Therefore, soil organic carbon and total nitrogen accumulate and an “elusive” carbon and nitrogen pool forms in the paddy fields compared with cornfields in the Pb-Zn tailings-contaminated karst area.
The proteomics of inflammatory response in whey from cows with subclinical mastitis were analysed. Whey protein lysates were separated on 24 cm dry IPG strips (pH 3-10 linear) and 24 cm dry IPG strips (pH 4-7) using two-dimensional electrophoresis. The results indicated that the whey proteins in milk from cows with subclinical mastitis are different from those in milk from healthy cows. All protein spots were found to have biologically relevant changes in relative abundance during subclinical mastitis using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry analysis, including ß-1,4 galactosyltransferase, ß-2 microglobulin, complement 3, α-l-acid glycoprotein, ß-lactoglobulin A, α-Sl casein precursor , ß-casein B, and serotransferrin precursor. The mRNA expression of these genes was verified by quantitative real-time PCR. These proteins are involved in signal transduction, binding, transport, and immune defence activity. The results suggest that the markers may be used for the diagnosis of subclinical mastitis.
We studied the effects of the long-term (17 years) application of different chemical fertilizer regimes on soil N and its inorganic fractions in relation to the soil physical properties in a sloping cropland in the hilly Loess Plateau. Seven treatments comprised of two factors were arranged within a randomized complete block design. As expected, crop yield increased 2-4-fold, but soil structure did not degrade. Under long-term fertilization, the portion of the small aggregates (<2 mm) and sand content were significantly decreased while the large aggregates (>2 mm) and the silt content increased by 276% and 7.4%, respectively, as compared with those in areas without fertilization. Moreover, the various continuous chemical fertilization treatments increased SOC content by 12.9% and total N by 12.4%, on average, compared with unfertilized plots. The SOC, total N, and shoot C, shoot N had close relationships with the large aggregates (>2 mm) and the clay content. The results suggest that, in this setting, the long-term addition of both N and P may sustain soil quality of an infertile sloping cropland in this region, compared to agriculture without fertilizer or applications of N alone.
With the continuous improvement of the economy, more and more attention has been paid to environmental problems. Beijing is China’s economic, political, and cultural center, and its low-carbon development by external concerns. In this paper, the relationship between economic development and environmental pollution is analyzed by using the symbolic regression method, which is based on the data of per capita CO₂ emissions, total energy consumption, energy intensity, and per capita GDP in Beijing city during 1980-2015. The study found that the presence of the M-curve model between per capita CO₂ emissions and per capita GDP, total energy consumption, and per capita GDP are in line with the traditional model of the EKC curve, and that the L-curve model exists between the energy intensity and per capita GDP, respectively, with promising performance. Based on our analysis, we present policy suggestions for reducing carbon emissions and developing a low-carbon economy in Beijing.
To gain a better understanding of the impact from the land-use change in the Huixian karst wetland system, we analyzed soil microflora, enzyme activities, and physicochemical properties from three land-use types (natural wetland, paddy field, and dry farmland). The results showed that soil pH, soil organic carbon, total nitrogen, cation exchange capacity, exchangeable Ca and Mg, and the cellulase and alkaline phosphatase activities in the dry farmland were significantly lower than those in the paddy field and natural wetland (p<0.05). However, soil pH, soil organic carbon, total nitrogen, cation exchange capacity, exchangeable Ca and Mg, and the cellulase and alkaline phosphatase activities made no significant difference to the paddy field and the natural wetland (p>0.05). Moreover, the soil microbial biomass carbon and nitrogen in the dry farmland were also lower than those in the paddy field and natural wetland, although no significant differences were observed (p>0.05). This suggests that, in the alkali condition, natural wetland with high biomass and weak microbial activity may be an important carbon sink. In the CCA biplot, it can be seen that the natural wetland cluster intersects with the paddy field cluster and the dry farmland cluster in the same quadrant (although the paddy field and the dry farmland clusters are separate). Therefore, we concluded that the natural wetland usually was reclaimed as paddy field or dry farmland directly for agricultural output in the Huixian karst wetland system. The paddy field has a waterlogged condition and shows the similar results to natural wetland, which can be regarded as artificial wetland. In view of the similar ecosystem services by paddy fields as substitutes of natural wetland, if the degradation trend of natural karst wetland can’t be reversed, the paddy field should be preserved in the Huixian karst wetland system for its ecosystem service.
Submerged f loating tunnel (SFT for short) is a special underwater traffic structure, and wave load is one of the main environmental loads of SFT structure. In this paper, the 1:60 physical model test of three kinds of SFT in a two-dimensional wave f lume is tested. The effects of random irregular waves on the SFT structure under different wave heights and periods are discussed. The study shows that: (1) Compared with circular and polygonal sections, there are multiple local peaks in the elliptical section during the period. with the increase of wave height, the number of local peaks also increases. It suggests that the rotational moment plays an important role in the elliptical section which has a relatively small depth-width ratio. (2) The position of the maximum and minimum pressure in the three kinds of SFT sections is consistent. Their vertical wave forces are all larger than their horizontal wave forces. The increase of vertical wave force relative to horizontal wave force in polygon section is larger than that in elliptical section, and the difference in the circular section is the smallest. (3) Under the same traffic condition, the wave force of the elliptical and polygon section is smaller, but they are more sensitive to the change of wave height, and the increase is obvious. The distribution of wave force in the circular section is more uniform
Agricultural management practices play an important role in soil structure and fertility. However, there is a lack of knowledge on the effects of long-term fertilization on aggregate structure in the Loess Plateau region in China. This study was devoted to examining the responses of soil aggregate stability and associated structure to fertilizers over 19 years under a soybean (Glycine max L.)-corn (Zea Mays) rotation. Treatments included unfertilized control (CK); nitrogen (N), phosphorus (P), and NP chemical fertilizers; and manure (M) and MN, MP and MNP organic/chemical combinations. The results showed that the water-stable aggregates, mean weight diameter, geometric mean diameter, aggregate state, and aggregate degree decreased in chemical fertilizers (N, P, and NP). However, it increased in all treatments containing manure (M, MN, MP, and MNP) compared to the CK. The changes in dispersion rate and fractal dimension were opposite to those indicators in all treatments. The applications of chemical fertilizers do guarantee an increase in crop yield, but only organic fertilizers significantly improved soil structure. These results suggest that manure’s incorporation into loessial soil is a preferred strategy for sustainable soil management.
High-resolution measurements of rainfall, water level, pH, conductivity, temperature, [K⁺], [NO₃⁻] and [Ca²⁺] of the Landiantang epikarst spring at Nongla, Mashan County in Guangxi Province, China were recorded by using data loggers with a time interval of fifteen minutes. The results showed that the pH of the Landiantang Spring dropped and the conductivity fell as well. As Ca²⁺, Mg²⁺ and HCO₃⁻ were the dominant ions, the linear relationships between conductivity and those ions were developed to calculate variations in SIC, SID and LogPCO2 of the spring during rainfalls. The LogPCO2 of Landiantang Spring during rainfalls was lower than that at lower flows, and its SIC and SID also were lower. It can be figured out that the dilution of precipitation controls the hydrochemical variations of Landiantang Spring during rainfall, and the water-rock-gas interactions control the hydrochemical variations of the spring at the usual time. The process of water-rockgas is universal to Landiantang Spring because after rainfall, gas with high CO₂ concentration dissolves in water flowing as spring, which in turn becomes more highly undersaturated, dissolves more dolomite to make up for the effect of precipitation dilution, and the conductivity renews slowly after rainfall. However, to explain the hydrological and chemical changes, the dilution of precipitation may be more important during rainfall, because it is the key process to controlling the chemical evolutions of the spring. The [K⁺] and [NO₃⁻] rise rapidly as the [Ca²⁺] falls during rainfall. Therefore, an important conclusion is hypothesized that the restricted growth of plants in karst regions is possibly caused not only by the low labile trace elements in soil, but also by the loss of these nutritional elements in the ecosystem. Moreover, fertilizers, for example, can also be brought away through the epikarst zone by flowing water due to high fissure and permeability of the epikarst zone, which will contaminate epikarst spring and groundwater, and may produce serious environmental problems. Thus, how to develop effective solutions to karst water-related environmental challenges will become the primary study of karst aquifers and water resources in the future.
The length–weight relations (LWR) were estimated for 20 fish species from the Pearl River, South China. A total of 3610 specimens representing 10 families were used to estimate the relation parameters. The b values in the LWR (W = aLb) ranged from 2.068 for Odontamblyopus lacepedii (Temminck et Schlegel, 1845) to 3.423 for Pseudogobius javanicus (Bleeker, 1856). The LWR with high coefficient of determination (r2) is significant for all the species. The r2 value ranged from 0.919 to 0.993. This study presents the first reference on length–weight relations for 7 species and new records of maximum total length for 6 species. The results may be helpful in future fisheries studies in this area.
This communication reports detection of somaclonal variation among tissue culture-raised plants of Amorphophallus rivieri Durieu, an economically important crop in China, with high content of glucomannan in its corms. A population of regenerated plants was obtained from a single donor plant of A. rivieri via corm organogenesis, and 28 plants were randomly selected as a representative sample and subjected to analysis of somaclonal variation using inter-simple sequence repeat (ISSR) markers. Of the 26 ISSR primers screened, 13 gave distinct and reproducible band patterns, yielding 131 bands with an average of 10.1 bands per primer. Ten primers were polymorphic and generated 16 polymorphic bands with 12.2% mean polymorphism. Based on the ISSR data from the regenerated plants and the donor plant, Jaccard's similarity coefficients were calculated; they ranged from 0.961 to 1.000 with a mean of 0.982. A dendrogram was constructed using the unweighted pair group method with arithmetic mean (UPGMA); it showed that a majority of regenerated plants (including the donor plant) clustered closely, with a mean similarity coefficient of 0.987. Low somaclonal variation observed in the regenerated plants indicates that rapid propagation of A. rivieri via corm organogenesis is a practicable method with a low risk of genetic instability.
Accurate tide height is crucial for the safe navigation of large deep-draft ships when they enter and leave the port. We have proposed an accurate forecasting method for the tide heights from the observation data and neural networks, which can easily calculate the tidal window period of large deep-draft ships’ navigation through long channels at high tide. Moreover, an artificial neural network is established for the tide height from the observation of tide heights before their current time node. For an ideal forecast, the neural network was optimized for one year with the tide height data of Huanghua Port. In case of large ships, their tidal characteristics of channels for are complex. A new method is proposed for the observation of multiple stations and artificial neural networks of each observation station. When ships are navigating through the port, the tide height is predicted from the observed data and forecast tide heights of multiple observation stations. Thus, a valid tidal window period is secured when the ships enter the port. Comparative analysis of the ship’s tidal window period with that of the measured one can lead us to conclude that the forecasted data has a strong correlation with the measurement. So, our proposed algorithm can accurately predict the tide height and calculate the node timing when the ship enters and depart the port. Finally, these results can be applied for the safe navigation of large deep-draft ships when the port is at high tide
Static and stirred culture systems are widely used to expand hematopoietic cells, but differential culture performances are observed between these systems. We hypothesize that these differential culture outcomes are caused by the physiological responses of CD34+ hematopoietic stem and progenitor cells (HSPCs) to the different physical microenvironments created in these culture devices. To understand the genetic changes provoked by culture microenvironments, the gene expression profiling of CD34+ HSPCs grown in static and stirred culture systems was compared using SMART-PCR and cDNA arrays. The results revealed that 103 and 99 genes were significantly expressed in CD34+ cells from static and stirred systems, respectively. Of those, 91 have similar levels of expression, while 12 show differential transcription levels. These differentially expressed genes are mainly involved in anti-oxidation, DNA repair, apoptosis, and chemotactic activity. A quantitative molecular understanding of the influences of growth microenvironments on transcriptional events in CD34+ HSPCs should give new insights into optimizing culture strategies to produce hematopoietic cells.
Ovary culture has been widely used to overcome the fertilization barrier of interspecific hybridizations. In order to understand the relation between ovary culture and the growth temperature of hybrid siliques, three sets of interspecific hybridization were carried out in the field. Hybrid siliques in each set of hybridizations were excised at 10, 15, and 20 days after pollination and temperature from pollination to excision was recorded. No significant correlation was found between hybrid embryo yield in ovary culture and the average temperature. However, a significant quadratic correlation between the efficiency of ovary culture and the effective accumulated temperature (EAT) was observed. It indicated a rise-andfall relation between the optimal excision time and the growth temperature of hybrid siliques. Our data suggested that EAT is a more reliable indicator than silique age to determine the optimal time for excisinghybrid B. napus 9 B. oleracea siliques for ovary culture.
In the process of oil exploitation and transportation, large amounts of crude oil are often spilled, resulting in serious pollution of the marine environment. Forecasting oil spill reverse trajectories to determine the exact oil spill sources is crucial for taking proactive and effective emergency measures. In this study, the backward-in-time model (BTM) is proposed for identifying sources of oil spills in the East China Sea. The wind, current and random walk are three major factors in the simulation of oil spill sources. The wind drag coefficient varies along with the uncertainty of the wind field, and the random walk is sensitive to various traits of different regions, these factors are taken as constants in most of the state-of-the-art studies. In this paper, a self-adaptive modification mechanism for drift factors is proposed, which depends on a data set derived from the drifter buoys deployed over the East China Sea shelf. It can be well adapted to the regional characteristics of different sea areas. The correlation factor between predicted positions and actual locations of the drifters is used to estimate optimal coefficients of the BTM. A comparison between the BTM and the traditional method is also made in this study. The results presented in this paper indicate that our method can be used to predict the actual specific spillage locations.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.