Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
At present, breeding programmes aimed at combining advantageous traits within the Lolium-Festuca complex, are mainly focused on introgression procedures. One principal objective, is the transfer of genes conferring resistance to abiotic stresses from Festuca species (F. pratensis, F. arundinacea and F. glaucescens) into Lolium multiflorum and L. perenne germplasm. In our experiments, two different hybrids: triploid - L. multiflorum (4x) x F. pratensis (2x) and pentaploid - F. arundinacea (6x) x L. multiflorum (4x) were backcrossed twice onto L. multiflorum cultivars, and numerous BC2 progeny generated. BC2 plants from both combinations were tested in field and/or simulated conditions for winter hardiness and drought resistance. GISH (genomic in situ hybridisation) analyses were then performed on the most winter hardy and drought resistant plants to locate putative genes for stress resistance. Using resistant L. multiflorum genotypes with a single Festuca chromatin segment, it was possible to allocate AFLP (amplified fragment length polymorphism) markers specific to that segment. Markers associated with genes conferring stress resistance facilitate marker-assisted selection programmes to obtain new, more persistent grass cultivars. Preliminary results of GISH analysis, to identify Festuca chromosome segments in L. multiflorum introgression lines and to find segment-specific AFLP markers, are presented.
During cold acclimation by higher plants, temperature perception via changes in redox state of Photosystem II (PSII) and subsequent acclimation of the photosynthetic apparatus to cold is very important for achieving freezing tolerance. These properties were studied in two groups (A and B) of the same backcross 3 (BC₃) progeny derived from a triploid hybrid of Festuca pratensis (2×) × Lolium multiflorum (4×) backcrossed three times onto diploid L. multiflorum cultivars. Leaves of Group A plants formed at 20℃ at medium-low light were unable to acclimate their photosynthetic apparatus to cold. Compared to Group B, the Group A plants were also more frost sensitive. This acclimation ability correlated with the freezing tolerance of the plants. However, leaves of the same Group A plants developed at 20℃, but under higher-light conditions had increased ability to acclimate their photosynthetic apparatus to cold. It was concluded that Group A plants may have impaired PSII temperature perception, and this then resulted in their poor capability to cold acclimate.
Recent advances at Institute of Grassland and Environmental Research (Aberystwyth, U.K.) in cytogenetics of the Lolium/Festuca complex places us in the advantageous position of being able to map genes of agronomic importance onto chromosome arms using fluorescence in situ hybridization (FISH). The ability to physically map genes leads to the capability for "dissecting" quantitative traits into their different components and will lead to better understanding of the complex physiological processes involved and the identification of their genetic control. By tagging genes of interest, using molecular and morphological markers, it will be possible to select and combine suites of desirable genes in a single genotype and thus produce novel cultivars by conventional breeding procedures. Programmes for introgression depend on the relationships between species and on levels of chromosome pairing. Phylogenetic relationships within the Lolium/Festuca complex are being determined using both genomic in situ hybridization (GISH) and FISH. With recent advances in genetic manipulation within the Lolium/Festuca complex, opportunities now arise for gene transfer from Lolium and Festuca species into other important agricultural crops.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.