Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The p53 tumor suppressor plays the role of a cellular hub which gathers stress signals such as damage to DNA or hypoxia and translates them into a complex response. p53 exerts its action mainly as a potent transcription factor. The two major outcomes of p53 activity are highlighted: cell cycle arrest and apoptosis. During malignant transformation p53 or p53-pathway related molecules are disabled extremely often. Mutations in p53 gene are present in every second human tumor. A mutant form of p53 may not only negate the wild type p53 function but may play additional role in tumor progression. Therefore p53 represents a relatively unique and specific target for anticancer drug design. Current approaches include several different molecules able to restore p53 wild-type conformation and activity. Such small molecule drugs hold great promise in treating human tumors with dysfunction of p53 pathway in the near future.
BRAF mutation testing is one of the best examples how modern genetic testing may help to effectively use targeted therapies in cancer patients. Since many different genetic techniques are employed to assess BRAF mutation status with no; available comparison of their sensitivity and usefulness for different types of samples, we decided to evaluate our own PCR-based assay employing the amplification refractory mutation system (ARMS-PCR) to detect the most common hotspot mutation c. T1799A (p. V600E) by comparing it with two qPCR based assays: a commercially available test with hybridizing probes (TIB MOLBIOL) and high resolution melting (HRM). Positive results were verified with Sanger sequencing. DNA from two cancer cell lines with known mutation status and from tissue samples from melanoma and gastric cancer was used. ARMS-PCR was the most sensitive method with the level of detection of the mutant allele at 2%. Similar sensitivity was observed for the qPCR-based commercial test employing hybridizing probes; however, this test cannot exclude negative results from poor or low quality samples. Another qPCR-based method, HRM, had lower sensitivity with the detection level of approximately 20%. An additional drawback of HRM methodology was the inability to distinguish between wild type and mutant homozygotes in a straightforward assay, probably due to the character of this particular mutation (T>A). Sanger sequencing had the sensitivity of the detection of mutant allele similar to HRM, approx. 20%. In conclusion, simple ARMS-PCR may be considered the method of choice for rapid, cost-effective screening for BRAF p. V600E mutation.
Photodynamic therapy (PDT) is a clinically approved and rapidly developing cancer treatment regimen. It is a minimally invasive two-stage procedure that requires administration of a photosensitizing agent followed by illumination of the tumor with visible light usually generated by laser sources. A third component of PDT is molecular oxygen which is required for the most effective antitumor effects. In the presence of the latter, light of an appropriate wavelength excites the photosensitizer thereby producing cytotoxic intermediates that damage cellular structures. PDT has been approved in many countries for the treatment of lung, esophageal, bladder, skin and head and neck cancers. The antitumor effects of this treatment result from the combination of direct tumor cell photodamage, destruction of tumor vasculature and activation of an immune response. The mechanisms of the direct photodamage of tumor cells, the signaling pathways that lead to apoptosis or survival of sublethaly damaged cells, and potential novel strategies of improving the antitumor efficacy of PDT are discussed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.