Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 29

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Spontaneous locomotor activity of opossums and Wistar rats during a two-hour session in the open field has been recorded, assessed and behavior of individuals of the two species compared. Afterwards, groups of highly active (HA) and low active (LA) opossums and rats were selected on the basis of the distance traveled in the test. Differences between the selected groups were evaluated. Opossums were generally more active, moving faster and covering longer distance. They spent more time in the central part of the open field and traveled across the center more times than rats, therefore they showed also a lower level of anxiety. These data confirm our previous results indicating that opossums preferentially use the risky exploration strategy while rats mainly rely on the defensive behaviour. Opossums showed a higher variability of the volume of locomotor activity than rats. Comparison of the HA and LA groups of opossums and rats showed that in each species they differed on another principle: the level of anxiety in Wistar rats and level of locomotor activity in opossums. Therefore results of the open field test might measure different parameters in different species.
In our study we used c-Fos protein to identify whether cells containing calretinin (CR) in the rat piriform cortex are engaged in the response to stress stimulation and to find out how this expression changes during maturation (PC). The material consisted of Wistar strain rats of between 0 and 120 days of age divided into 9 groups. Each group consisted of 5 experimental and 3 control rats. Animals from the experimental groups were exposed to the open field test throughout 10 minutes. The control animals were kept in a home cage. In all age-related control rats weak c-Fos immunoreactivity was observed. Our results showed that cells containing c-Fos following an acute open field test were observed predominantly in layers II and III of the PC just after birth. Their number then increased and stabilised on P30. We had already observed immature CR-ir cells at birth. In the 4th week of life these neurons achieved maturity. Their number increased to P90 and decreased in older animals. CR-ir neurons were localised mainly in layer II and to a lesser degree in layers III and I of the PC. Double immunostaining c-Fos/CR revealed that the level of co-localisation was low. Only small differences were observed between the anterior and posterior parts of the PC. In the anterior part a higher number of CR-ir neurons was found. The difference in the level of co-localisation between the anterior and posterior parts was age-related and differentiated. Our results may suggest that during maturation CR-ir neurons of the piriform cortex are not the main population engaged in response to the open field test.
A type of stress stimulation and age are claimed to affect the expression of brain-derived neurotrophic factor (BDNF) and its receptor - tyrosine kinase B (TrkB) in the hippocampal regions differentially. This study aimed to explore the influence of chronic (15 min daily for 21 days) forced swim stress (FS) exposure on the BDNF and TrkB containing neurons in the hippocampal CA1, CA3 pyramidal cell layers and dentate gyrus (DG) granule cell layer in juvenile (P28) and aged (P360) rats. An immunofluorescence (-ir) method was used to detect BDNF-ir and TrkB-ir cells. Under chronic FS exposure, in the group of juvenile rats a significant decrease in the density of BDNF immunoreactive neurons was observed in CA1 and DG (p<0.001), unlike CA3, where it remained unaltered just as the density of TrkB-ir cells in CA1 and DG, but in CA3 the number of TrkB-ir cells was found to grow (p<0.05) in comparison with control groups. After chronic FS exposure of aged (P360) rats, the density of BDNF-ir and TrkB-ir cells did not decline in any of the subregions of the hippocampus. In all subfields of the hippocampus, the denseness of BDNF-positive neurons was significantly higher in P360 stressed group, compared with P28 stressed group, but the density of TrkB-ir fell more markedly in P360 than in P28. In conclusion, chronic FS stress influenced the number of BDNF and TrkB immunoreactive neurons only in juvenile animals. The age of rats tested in the chronic forced swim test was a decisive factor determining changes in the density of BDNF-ir and TrkB-ir in the hippocampal structures.
There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals’ activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver. 2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change — higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats. (Folia Morphol 2013; 72, 4: 300–305)
We investigated distribution and morphology of neurons of the midbrain nuclei: the ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray (PAG) of the adult grey short-tailed opossums that were double immunolabeled for the presence of calretinin (CR) and/or tyrosine hydroxylase (TH). The majority of TH-immunopositive neurons and fibers were located in the VTA, SN, and only scarce population of small neurons expressing TH was present in the PAG. In the SN 80% of TH-expressing neurons had large cell bodies, and only a small fraction had small perikarya. In the PAG populations of large and medium sized neurons were equal and 20% of neurons had small perikarya. Much scarcer population of TH-immunoreactive neurons in the PAG consisted of large or small neurons in its dorsal part (PAGd) and almost exclusively small neurons in the ventral part (PAGv). Distribution of neurons expressing TH and their types in the opossum are similar to those in rodents. The majority of CR-immunolabeled neurons were found in the VTA. In its subdivision, the parabrachal pigmented nucleus (PBP) cells expressing CR were approximately 28% more numerous than cells expressing TH. In spite of that, only 42% of TH-expressing neurons coexpressed CR. The high degree of colocalization TH and CR was observed in the SN. We propose that a higher percentage of TH/CR colocalization, which is observed in the opossums SN, may give them the ability to adapt to changes in their motor functions.
The main source of energy for brain and other organs is glucose. To obtain energy for all tissue, glucose has to come through glycolysis; then as pyruvate it is converted to acetyl-CoA by pyruvate dehydrogenase complex (PDC) and finally enters citric acid cycle. What happens when one of these stages become disturb? Mutation in genes encoding subunits of PDC leads to pyruvate dehydrogenase deficiency. Abnormalities in PDC activity result in severe metabolic and brain malformations. For better understanding the development and mechanism of pyruvate dehydrogenase deficiency the murine model of this disease has been created. Studies on a murine model showed similar malformation in brain structures as in the patients suffered from pyruvate dehydrogenase deficiency such as reduced neuronal density, heterotopias of grey matter, reduced size of corpus callosum and pyramids. There is still no effective cure for PDC-deficiency. Promising therapy seemed to be ketogenic diet, which substitutes glucose to ketone bodies as a source of energy. Studies have shown that ketogenic diet decreases lactic acidosis and inhibits brain malformations, but not the mortality in early childhood. The newest reports say that phenylbutyrate increases the level of PDC in the brain, because it reduces the level of inactive form of PDH. Experiments on human fibroblast and zebra fish PDC-deficiency model showed that phenylbutyrate is promising cure to PDC-deficiency. This review summarizes the most important findings on the metabolic and morphological effects of PDC-deficiency and research for treatment therapy. (Folia Morphol 2020; 79, 2: 191–197)
The hippocampus plays a role in new learning, memory and emotion and is a component of the neuroanatomical stress circuit. The structure is involved in terminating hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress and attenuates stress responses by shutting off this axis. The immunoreactivity (-ir) of c-Fos, NGF and its receptor TrkA following acute and chronic open-field stress were studied in CA1-CA3 and the DG of the hippocampus. The material consisted of 21 male adult rats divided into three groups: nonstressed (control) animals and rats exposed to acute (15 min once) and chronic (15 min daily for 21 days) aversive stimulation (open-field exposure). The brains were stained with use of immunohistochemical methods for c-Fos, NGF or TrkA. In the animals exposed to acute open-field stress the number of c-Fos-, TrkAand NGF-ir cells was higher in all the structures studied than in the control animals. However they were differentiated only in c-Fos immunoreactivity. In the rats exposed to chronic open-field stress the number of c-Fos-ir cells in the structures of the hippocampal formation studied was smaller than in rats exposed to acute stress and was comparable to that in the control group. No differences were observed between the groups exposed to acute and chronic stress in the number of TrkA-ir cells in the structures under investigation. The number of NGF-ir neurons in CA1 and CA2 was lower after exposure to chronic than after exposure to acute stress but was still higher than that in the control group. Our findings indicate that neurons of CA1-CA3 and the DG are engaged in the stress response after acute as well as chronic open-field exposure. This is probably related to the important role of the hippocampus in processing new spatial information as well as in the habituation processes, although these appear to have different mechanisms.
It is postulated, that brain-derived neurotrophic factor (BDNF) have been implicated in the neurobiological mechanisms underlying brain plasticity after chronic stress. The objective of this study was to evaluate infl uence of chronic stress on brain plasticity measured by BDNF immunoreactivity in brain structures of young (P28) and adult (P360) rats. 26 male Wistar rats were exposed to 15 min daily open fi eld (OF) or forced swim test (FS) during three weeks. Fluorescent immunohistochemistry was used to localize BDNF positive cells in hypothalamic areas connected with stress response: both parvo- and magnocellular divisions of the paraventricular nucleus (PVp and PVm) and the supraoptic nucleus (SO). In animals aged P28 chronic OF i FS stress caused a statistically signifi cant (P<0.001) decline in the number of BDNF-ir cells in both parts of the PV and SO. In contrast, in rats P360 was not observed any change in the number of BDNF-ir cells after chronic OF stimulation compared to control in PVp and SO. In summary: age of rats subjected to chronic stimulation OF FS or stress had an impact on changes in the number of BDNF-ir cells in the tested hypothalamic nuclei.
NGF (nerve growth factor) is involved not only in growth and survival of neurons but also promotes their age-dependent morphological changes (repair and remodeling) in normal life and during stress. This study aimed to investigate an infl uence of ages, on the changes of NGF immunoreactive (-ir) cells in the: amygdala, hippocampus and hypothalamus caused by acute (one-time for 15 min) or repeated (21 days for 15 min daily) exposition to open fi eld (OF) test. Each group of age consisted of experimental and control (non-stressed) Wistar male rats. To detected NGF-ir cells single immunofl uorescence staining was applied. Each control groups revealed many of NGF-ir neurons in the studied structures. Following OF acute stimulation, the number of NGF-ir cells in all the studied structures was higher in the three months old rats than that of control ones; the level of NGF-ir cells in the one year old rats was higher only in paraventricular nucleus of hypothalamus and in central nucleus of amygdala. In two years old rats no changes was observed in comparison with control animals. After OF repeated exposition, the level of NGF-ir cells was similar to that observed under acute one. These data demonstrated that the aging affected the level of NGF-ir neurons caused by acute and repeated OF stimulation in the structures of limbic system. Stress duration did not infl uence the level of NGF-ir neurons.
This study aimed to investigate the influence of acute (a single 15 min) and chronic (15 min daily for 21 days) exposure to forced swim (FS) test on nerve growth factor (NGF)/c-Fos cells in hypothalamic paraventricular (PV) and supraoptic (SO) nuclei, the central (CeA) and medial (MeA) amygdaloid nuclei and CA3-hippocampus in juvenile (P28) and aged (P360) rats. The double-immunofluorescence (-ir) method was used to detect NGF-ir and c-Fos-ir cells. The amount of NGF/c-Fos-ir cells in relation to all NGF-ir cells is shown as a percentage. In the acute FS test an increase in NGF/c-Fos-ir cells (P<0.05) was observed in all studied structures of juvenile rats and in the PV and SO of the aged individuals. After chronic FS stress, the NGF/c-Fos-ir ratio remained unaltered (except in the SO) in P28, but it increased (P<0.05) in all investigated regions in P360 compared with the controls. The findings may reflect the state of molecular plasticity within the limbic hypothalamic-pituitary-adrenocortical (HPA) axis in both age groups, yet the phenomenon of habituation in NGF/c-Fos-ir after chronic FS exposure was observed only in juvenile animals.
The Marsupial feathertail glider has a unique set of morphological, anatomical and behavioural features that make it a promising model for study of primate evolution. Among them it has many locomotor adaptations to arboreal life, such as diagonal gait of movements, gliding, fast climbing and running along branches. These ecological and behavioural specialisations could result in differences in anatomy of the brain systems involved in their integration. It is well acknowledged that dopaminergic neurons are involved in motor control, motivation and cognition. Due to the fact that there are no data on morphological organisation of dopaminergic system in the midbrain of this species, we decided to investigate it using immunohistochemical and quantitative methods. Our study showed that the general distribution and characteristics of the dopaminergic cells within midbrain nuclei of the pygmy acrobat is similar to that in other species, but it lack the substantia nigra compact part — ventral tier and “tail” of the substantia nigra subnuclei. This study provides the first description of the dopaminergic cells and nuclei in the midbrain of the feathertail glider and we hope it will start interest in the neurobiology of this species. (Folia Morphol 2017; 76, 4: 558–567)
In the present study we wanted to check whether the expression of the c-Fos protein (the marker of cellular activity) appears in cells containing calcium-binding proteins (CaBPs) in animals exposed to the open field test. Eight adult Wistar rats were examined. In the first step the open field test was applied throughout 10 minutes. After perfusional fixation brains were frozen and cut on the cryostat in the coronal plane and stained with the standard immunohistochemical method. Sections were double stained for c-Fos and CaBPs: parvalbumin (PV), calbindin (CB), calretinin (CR). c-Fos positive cells were localized predominantly in layers II and III of the piriform cortex (PC). The double labeling study showed that neurons containing CaBPs are rarely c-Fos-immunoreactive. Often PV-positive and CB-positive fibers surround c-Fos-positive neurons in layers II and III in a form of a basket. It seems that cells containing CaBPs are not directly involved in the response to aversive stimuli but cells containing those calcium-binding proteins might influence directly c-Fos positive neurons of PC.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.