Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 37

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Graminicydy - mechanizm dzialania

100%
Fruits are a good source of bioactive compounds exhibiting pro-health properties. The objective of the study was to evaluate the effect of adding chokeberry, elderberry, Japanese quince, flax seeds and wheat germs on the antioxidant properties of low-sugar cherry jams stored at refrigeration (10 ºC) or room temperature (20 ºC) for 12 months. The highest levels of total polyphenols (3.036 g/kg), total flavonoids (1.372 g/kg) and total anthocyanins (0.902 g/kg) were recorded in the cherry jam with 15 % chokeberry fruit added, immediately after its production. In the cherry jams studied, the following polyphenols were identified: p-cumaric acid, ferulic acid, caffeic acid, rutin and (+)- catechin. In the jam without plant ingredients the dominant polyphenols were (+)-catechin (0.023 g/kg) and caffeic acid (0.019 g/kg). The content of vitamin C was the highest (0.085 g/kg) in the jam with Japanese quince added. The level of antioxidant activity (ABTS·⁺, DPPH· and FRAP) was the highest in the cherry jam with 15 % added chokeberry fruit. Both the longer time of storage and higher storage temperature resulted in a decrease in the value of all the parameters analyzed. Enriching cherry jams with pro-health ingredients improved the quality of the final product. These products are a valuable source of antioxidants in daily diet.
 Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes - the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.
The willows with high phenolic glycosides concentrations are used in herbal production. The knowledge about these metabolites are well documented, but less is known about macroelement concentration in the bark of herb willows. The aims of this study were to evaluate the content of phenolic glycosides and macroelements in the bark of Salix alba, S. daphnoides and S. purpurea originating from their natural habitats and cultivated on the two different soil types. The study was carried out in 2009 and 2010 on a 5–6 year-old plantation. All the species cultivated on the loess soil were characterized by the highest concentration of phenolic glycosides in the bark. The soil type under willow plantation determined both the content of phenolic glycosides and the content of macroelements in the bark of all the three willow species. Calcium primarily determined the difference in the chemical composition of the bark. Among the species studied, Salix alba was characterized by the highest content of K, Ca and Mg in the bark, compared to the other species studied, irrespective of the soil conditions.
Eight species from the grass family were studied: wheat, rye, triticale, barley, oats, maize, couch grass, rice, and two dicotyledonous species: field pea and common flax. Seedlings of the tested species were grown in hydroponic cultures with haloxyfop or alloxydim alone (graminicides) and with haloxyfop or alloxydim plus one of the tested antagonists (diphenylamine, salicylic acid, or norflurazon). All investigated species of the grass family showed similar susceptibility to the tested graminicides (measured with their effect on root growth). The tested dicotyledonous species were completely unsusceptible. Except in maize, the addition of antagonistic substances to the medium with herbicide weakened considerably the inhibitory effect of both haloxyfop and alloxydim. The tested graminicides also had a significant effect on the fatty acid composition of susceptible species (except maize, where the effect was low). In the lipids of the apical parts of roots, a significant decrease in the content of oleic and linoleic acids and a considerable increase in the content of linolenic acid were observed.
 The study examines the effects of haloxyfop (herbicide) and cerulenin (antibiotic) on de novo biosynthesis of fatty acids and complex lipids in roots of two sensitive species: wheat and maize. Seedlings were grown in hydroponic cultures with addition of [1-14C]acetate (control) and [1-14C]acetate together with one of the tested substances. Neither haloxyfop nor cerulenin prevented the uptake of [1-14C]acetate by the roots of tested species. In contrast, a strong inhibition of de novo biosynthesis of fatty acids was observed after a 4-h treatment. This phenomenon, however, tended to disappear with treatment time. After a 24-h incubation, the amount of radioactivity in de novo biosynthesized fatty acids in 1-cm-long root tips was up to three times higher than in the untreated control. In the "rest of roots", restoration of fatty acid biosynthesis capacity was less pronounced. Besides the effect on fatty acid biosynthesis, both tested inhibitors strongly suppressed the de novo biosynthesis of non-fatty acid-containing lipids. Analyses of radioactivity in individual lipid classes showed that after a 4-h treatment with haloxyfop or cerulenin the biosynthesis of most of the lipid classes was inhibited, although not to the same extent. After a 24-h treatment, an inhibition of de novo biosynthesis of some of the lipids was still observable, whereas the biosynthesis of others, especially phosphatidylethanolamine and phosphatidic acid, was strongly up-regulated. Contrary to the mainstream view that inhibition of fatty acid biosynthesis is the cause of haloxyfop and cerulenin phytotoxicity, the obtained results suggest multidirectional effects of both inhibitors.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.