Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Ascorbic acid (Asc) plays a multifunctional role in plants. L-galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) catalyzes the last step in the main pathway of Asc biosynthesis in higher plants. In this paper, we first examined how a change in Asc content leads to a changed plant growth and seed set using GLDH transgenic rice (Oryza sativa L.) which has different expression level of GLDH. The results showed that suppression of GLDH expression resulted in a loss of chlorophyll, a lower Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) protein content, and a lower rate of CO₂ assimilation. As a consequence, a slower rate of plant growth and lower seed set were observed. Reduced seed set and growth rate as measured by plant height, root length, leaf weight, and root weight were consistent with the GLDH-mediated reduction of photosynthetic function. Increasing GLDH expression maintained high levels of chlorophyll, Rubisco protein, and a higher rate of net photosynthesis, resulting in higher seed set. The observation that increasing the level of GLDH expression correlated with reduced lipid peroxidation whereas reducing GLDH expression correlated with increased lipid peroxidation was consistent with the foliar level of Asc, indicating that GLDH functions to protect against ROSmediated damage. When taken together, this work suggests that level of Asc in transgenic rice for GLDH is associated with plant growth and seed set.
Terrain database is the reference basic for autonomous underwater vehicle (AUV) to implement underwater terrain navigation (UTN) functions, and is the important part of building topographical features model for UTN. To investigate the feasibility and correlation of a variety of terrain parameters as terrain navigation information metrics, this paper described and analyzed the underwater terrain features and topography parameters calculation method. Proposing a comprehensive evaluation method for terrain navigation information, and constructing an underwater navigation information analysis model, which is associated with topographic features. Simulation results show that the underwater terrain features, are associated with UTN information directly or indirectly, also affect the terrain matching capture probability and the positioning accuracy directly
A theoretical model of acoustic field for a parametric focusing source on concave spherical surface is proposed. In this model, the source boundary conditions of the Spheroidal Beam Equation (SBE) for difference frequency wave excitation were studied. Propagation curves and beam patterns for difference frequency component of the acoustic field are compared with those obtained for Khokhlov-Zabolotskaya-Kuznetsov (KZK) model. The results demonstrate that the focused parametric model of SBE is good valid for a large aperture angle in the strongly focused acoustic field. It is also investigated that high directivity and good focal ability with the decreasing of downshift ratio and the increasing of half-aperture angle for the focused parametric model of SBE
Pigeon pea is an ideal crop for sustainable agriculture systems in Karst areas of southwest China, which frequently suffers from the formidable water deficit. Physiologically, arbuscular mycorrhizae (AM)-colonized pigeon pea (Cajanus cajan) demonstrated a further enhanced tolerance to drought stress. To elucidate the molecular mechanism underlying the elevated tolerance, suppression subtractive hybridization (SSH) were employed to dig up the differentially expressed genes using mixed cDNAs prepared from drought-stressed and unstressed pigeon pea seedlings inoculated by AM fungi (AMF) in the present work. Both forward and reverse SSH cDNA library were constructed and a total of 768 clones were obtained. Dot-blotting expression analysis identified that 142 clones were upregulated, and 49 were downregulated during water stress. After sequencing, 182 unique expressed sequence tags (ESTs) were obtained via blast analysis, among which 142 (78%) exhibited high homology to previously identified or putative proteins, however, 40 (22%) showed no homology in the database. The upregulated (102) and downregulated (40) ESTs with significant protein homology might be sorted into 16 and 12 functional categories respectively, which involved in a broad spectrum of biological pathways. Furthermore, semi-quantitative reverse transcription (RT)-PCR was carried out for the 35 differentially expressed genes whose putative functions implicated in abiotic stress tolerances in other species, and it was verified these differentially expressed genes highly involved in drought stress tolerance of AM-colonized pigeon pea.
Hydroxysteroid dehydrogenase belongs to the subfamily of short-chain dehydrogenases/reductases (SDR), and 11-β-hydroxysteroid dehydrogenase catalyzes the interconversion of inactive glucocorticoids (cortisone in human, dehydrocorticosterone in rodents) and active glucocorticoids (cortisol in human, corticosterone in rodents). We report here the cloning and characterization of a novel human SDR gene SCDR10B which encodes a protein with similarity to 11β-hydroxysteroid dehydrogenase 1. SCDR10B was isolated from a human brain cDNA library, and was mapped to chromosome 19p13.3 by browsing the UCSC genomic database. It contains an ORF with a length of 858 bp, encoding a protein with a transmembrane helix and SDR domain. Its molecular mass and isoelectric point are predicted to be 30.8 kDa and 10.3 kDa, respectively. SCDR10B protein is highly conserved in mammals and fish. Phylogenetic tree analysis indicated that SCDR10B stands for a new subgroup in the 11β-hydroxysteroid dehydrogenase family. Northern blot analysis showed that SCDR10B was highly expressed in brain, and a strong expression signal was detected in hippocampal neurons by immunohistochemical analysis. RT-PCR and immunohistochemical analysis showed that SCDR10B was up-regulated in lung-cancer cell lines and human lung cancer. SCDR10B can catalyze the dehydrogenation of cortisol in the presence of NADP+, and therefore it is a hydroxysteroid dehydrogenase.
Copper, an essential transient element, can be toxic to cells when present in excess. Altered copper homeostasis is involved in pathological events of many diseases. Human CUTA isoform2 is a member of cation tolerance protein (CutA1) family. In this study, we examined the effect of CUTA isoform2 overexpression on copper toxicity. It was shown that overexpressed CUTA isoform2 sensitized HeLa cells to copper toxicity by promoting copper-induced apoptosis. The inhibition effect of excessive copper on cell proliferation was also enhanced by overexpressed CUTA isoform2. So CUTA isoform2 was implicated to be involved in the cytotoxicity of copper.
Tuberculosis (TB), affecting one-third of the global population, kills an estimated two to three million people every year. The development of drug resistance is becoming a serious threat to any attempt to control this disease, which underscores the need for new agents targeting Mycobacterium tuberculosis (M. tuberculosis). Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. Previous studies have shown that osthole possesses antimycobacterial effects, however, the action mechanism of osthole is unclear. In the study, we used a commercial oligonucleotide microarray to determine the overall transcriptional response of M.tuberculosis H37Rv triggered by exposure to osthole. Analysis of the microarray data revealed that a total of 478 genes were differentially regulated by osthole. Of these, 241 genes were upregulated, and 237 genes were downregulated. Some of the important genes that were significantly regulated are related to different pathways such as fumarate reductase, class I peroxidase, cell wall, nitrate respiration, and protein synthesis. Real-time quantitative RT-PCR was performed for chosen genes to validate the microarray results. To our knowledge, this genome-wide transcriptomics approach has produced the first insights into the response of M. tuberculosis when exposed to osthole.
ZBTB7A is a known proto-oncogene that is implicated in carcinogenesis and cell differentiation and development. Fully understanding the function of ZBTB7A in cellular processes could provide useful strategies for cancer treatment and development-associated disease therapy. Here, global mapping of ZBTB7A transcription factor binding sites was developed by utilizing microarray technology in HepG2 cells. The data obtained from the microarrays was further validated via chromatin immunoprecipitation-PCR (ChIP-PCR) and real time-PCR, and it was revealed that ZBTB7A may be one of the regulators of neural development. ZBTB7A target signal pathways were identified in signal pathway and GO (Gene Ontology) analyses. This is the first report on the global mapping of ZBTB7A downstream direct targets, and these findings will be useful in understanding the roles of ZBTB7A in cellular processes.
The chlorophyll-deficient mutant (Bnchd1) is a spontaneous mutant of Brassica napus. Compared with the wild type, ‘Qingyou 10’, Bnchd1 exhibits distinct phenotypes, including interveinal yellowing leaves at the seedling stage and light-green leaves at the bolting stage, dwarfism throughout the lifespan, extremely low seed yields and abnormally shaped and early degradation of chloroplasts. Defective chloroplasts significantly reduce the levels of pigment in Bnchd1 at the seedling and bolting stages. Genetic analysis showed that two recessive genes, designated BnChd1-1 and BnChd1-2, are responsible for the light-green phenotype. BnChd1-1 was determined to be a single Mendelian factor in a BC₂F₁ population based on a phenotypic segregation ratio of 1:1. BnChd1-1 was mapped to a region of A01 using a BC₃F₁ population of 394 individuals with 198 green and 196 light-green plants. Within the collinear region in Brassica rapa, six genes that might be involved in chloroplast thylakoid development and NDH dehydrogenase activity were annotated. Among the six candidate genes, reverse transcription-polymerase chain reaction revealed that the mRNA levels of Bra021529 and Bra040517 were undetectable in the mutant and high in Qingyou10 and Westar plants at the seedling stage. Additionally, DNA sequence differences were identified across the gene and promoter region. Protein sequence differences were also observed in Bra040517, while no sequence differences in Bra021529 were observed between Bnchd1 and Qingyou10. Therefore, the homologue of Bra040517 is the most likely candidate gene for BnChd1-1.
The aim of this study was to construct and evaluate the immunity efficacy of the DNA multivalent vaccine pVIVO2SjFABP-23. The vaccine was constructed and produced as follows. Forty BALB/c mice were divided into four groups designated pVIVO2, pVIVO2Sj23, pVIVO2SjFABP and pVIVO2SjFABP-23. Each mouse was immunized with 100 µg of the corresponding plasmid DNA by intramuscular injection. 28 days postvaccination, the mice were challenged with S. japonicum cercariae, and the worm and egg burdens were determined 42 days post-challenge. Serum samples were collected from all the mice before and after vaccination and at the end of the experiment, and used for antibody detection. The IFN-γ and IL-4 levels were quantified in the supernatants of specifically stimulated spleen cells. The number of worms was reduced by 52%, 40% and 42% in mice respectively immunized with pVIVO2SjFABP-23, pVIVO2Sj23 or pVIVO2SjFABP. A respective 61%, 38% and 39% egg reduction was determined relative to those mice that only received the empty pVIVO2 plasmid. pVIVO2SjFABP-23 immunization increased IgG levels against SWAP and SEA. Increased IFN-γ levels were detected in the supernatant of specific stimulated spleen cells from mice immunized with the 3 different constructs. The multivalent DNA vaccine developed induced higher levels of protection than the two monovalent tested vaccines.
Altered gene expression was associated with the induction and maintenance of hepatocellular carcinoma (HCC). To determine the significance of HCR2 in HCC, here we compare the expression levels of HCR2 in carcinoma and in paired non-carcinoma tissues using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot analysis, and immunohistochemical staining. The expression ratio (ER) of HCR2 between the tumor and paired tumor-free tissues was calculated for each case and the data was clinicopathologically analyzed. The expression of HCR2 mRNA was found to be significantly decreased in HCC tissues compared with paired normal tissues (P < 0.001). HCR2 was downregulated in 58% (n = 22) of 38 HCC patients. The ER of HCR2 was higher in Edmondson’s grade I/II carcinomas than that in Edmondson’s grade III/IV carcinomas (P < 0.05). Western blot analysis showed HCR2 to be notably depressed in carcinoma tissues in 3 out of 4 HCC patients. Immunohistochemical staining indicated most HCR2 protein accumulated in non-carcinoma cells. These results suggested that altered HCR2 expression might play roles in the carcinogenesis and progression of HCC, and it could be a clinical marker for prognosis, and a molecular target for screening potential anti-HCC drugs.
We report here the cloning and characterization of a novel human short-chain dehydrogenases/ reductase gene SCDR9, isolated from a human liver cDNA library, and mapped to 4q22.1 by browsing the UCSC genomic database. SCDR9 containing an ORF with a length of 900 bp, encoding a protein with a signal peptide sequence and an adh_short domain. GFP localization shows SCDR9 protein concentrated in some site of the cytoplasm, but not in the ER. Expression pattern in eighteen tissues revealed that SCDR9 is expressed highly in liver. Soluble recombinant protein was successfully purified from Escherichia coli using pET28A(+) expression vector. Our data provides important information for further study of the function of the SCDR9 gene and its products.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.