Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The possible physiological mechanisms behind the allelopathic effects of three concentrations of black pepper (Piper nigrum) whole plants leachings on germination, seedling growth, chlorophyll and chlorophyll supply-orientation (precursors for chlorophyll biosynthesis) in Vigna mungo var. NIAB were investigated. Fifty and 75% leaching solutions negatively affected germination and seedling growth of V. mungo. Maximum inhibition (58.11%) was recorded in germination at 75% leaching-treated seeds. In addition, seedling growth was also retarded by the application of leachings. Especially the affect on shoot growth was more evident with the increasing concentrations compared to root growth. In other experiment 10-day old etiolated seedlings of V. mungo were cultured in growth chamber in one-tenth Hoagland culture solution with or without leaching-concentrations. Leaves were harvested randomly at 0, 6, 12, 24 and 48-h time interval after treatment. The concentrations of chlorophyll, porphyrin and its three biosynthetic precursors such as proto porphyrin IX (Proto), Mg-proto porphyrin IX (Mg-Proto), and proto-chlorophyllide (Pchlide) were determined. Synthesis of chlorophyll and porphyrin was inhibited as the leaching concentrations increased. The mole percent of Mg-Proto affected by the leachings exhibited the same pattern as that of Pchlide and Proto. The data suggest that enzymes responsible for the conversion of porphyrin precursors may be the major targets of the leaching causing the significant decrease in chlorophyll concentration.
The role of enzyme amylase in two germinating seed morphs, i.e. black and brown, of Halopyrum mucronatum in saline and non-saline environment was examined. Both seed morphs of this halophytic grass have variations in their moisture content, total lipid, protein, sugar, phenol and tannin contents. Black seed exhibited higher activity compared to brown in saline medium. Sugar mobilization in both seed morphs was also affected due to the difference in amylase activity. However, exogenous application of GA₃ in saline medium enhanced the amylase activity and sugar mobilization. Phenolic contents were similar except for vanillic acid which was found only in brown seeds while catechol was present only in black seeds. Phenols extracted from both seed morphs were applied to determine their effects on amylase activity. Phenolic extracts obtained from brown seeds showed higher degree of inhibition of amylase activity. Results are discussed in relation to seed coat phenols, leaching, amylase activity and sugar mobilization.
Ameliorative effects of Trichoderma harzianum (Th-6) on monocot crops under saline environment using hydroponic system were examined. Both rice and maize seeds were coated with T. harzianum (Th-6) and used for the saline and non-saline treatment. Germination and seedling growth performance were studied. T. harzianum (Th-6)-treated seeds showed constantly faster and more uniform germination as compared to untreated seeds. Moreover, seeds treated with Trichoderma improved plants’ growth and physiological performance under hydroponic saline environment compared to control. The treatments showed higher relative water content (RWC), dark-adapted quantum yield (F v/F m ratio), performance index (PIABS), photochemical quenching (q P), stomatal conductance (g s), pigments concentrations and antioxidant enzymes as compared to untreated saline environment. Application of endophyte inhibited the Na⁺ and Cl⁻ ion uptake in leaves when plants were exposed to saline environment. However, H₂O₂ contents of both treated crops declined under hydroponic salt stress environment. Physiological mechanism of T. harzianum (Th-6) application in mitigating the salt-related consequences of both monocot crops was discussed.
The methionine sulfoxide reductase B2 (MsrB2) gene catalyzes the reduction of free and protein-bound methionine sulfoxide to methionine and is known to provide tolerance to biotic and abiotic environmental stresses. There are yet to be any reports that MsrB2 enhances drought tolerance. Two drought-tolerant transgenic rice lines, L-8 (single copy) and L-23 (two copy), expressing the Capsicum annuum MsrB2 (CaMsrB2) gene were selected for stress tolerance phenotyping under drought stress conditions. CaMsrB2 enhanced relative water content, maintained substantial quantum yield (Fv/ Fm ratio), and subsequently improved photosynthetic pigments. Interestingly, L-23, carrying two-copy T-DNA insertion, showed greater drought tolerance through more effective stomatal regulation, carotenoid concentration, and osmotic potential than the wild type. High-tech infrared technology (FLIR SC620) was used for the selection of stress-tolerant physiotypes. Later, the IR results were correlated with other tested physiological parameters. The IR images, average plant temperature, and physiological parameters of the treated plants are discussed in detail.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.