Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Staphylococcus aureus is a common pathogen responsible for health-care-associated infections as well as community acquired ones. It is the etiological factor of a wide spectrum of infections. Therapeutic problems are caused by resistance of S. aureus to many antibiotics, specifically to methicillin (methicillin-resistant S. aureus, MRSA). In such cases a limited spectrum of antibiotics may be used and prolonged hospitalization is costly. Hence, there is an urgent need for the development of alternative antibiotic therapeutics. This work reviews the current knowledge concerning prospective treatment of staphylococcal diseases.
Staphylococcus aureus is an etiological factor of severe infections in both hospital and ambulatory environments. As methicillin resistant Staphylococcus aureus strains spread quickly across healthcare centers resulting in life-threatening infections with increased mortality, they are considered more virulent than MSSA strains. Protein A, encoded by the spa gene, is one of the virulence factors involved in the staphylococcal pathogenesis. It has been suggested that the number of 24-bp tandem repeat units along the X region of the spa gene correlates with the virulence level of the strains. The current work analyzed the relationships between the virulence of MRSA and MSSA strains with region X polymorphism. No obvious correlation was observed.
Photodynamic therapy (PDT) is based on photosensitizers activated by light of appropriate wavelength. Their activation leads to generation of singlet oxygen and free radicals responsible for the cytotoxic effect. The aim of this project was to compare the bactericidal effect of PDT using different porphyrin photosensitizers against a methicillin-resistant Staphylococcus aureus strain. Exogenous sensitizers (protoporphyrin IX and newly synthesized derivative, protoporphyrin diarginate) induced a 3 log10-unit reduction in bacterial viable counts. With the use of endogenous, ALA-induced porphyrins, a 1.6 log10-unit reduction was obtained. The sensitizers tested executed their antibacterial activity with no essential change in the antibiotic resistance pattern of the studied strain.
Photodynamic therapy (PDT), used for cancer treatment, is also an alternative method for eradication of drug-resistant bacteria. This method utilizes a nontoxic light-activated dye, called a photosensitizer, and visible light to produce reactive oxygen species that lead to bacterial cell death. The purpose of this study was to investigate the bactericidal effect of PDT using lanthanide derivatives of meso-tetra(N-methyl-4-pyridyl)porphine against Staphylococcus aureusstrains. The new photosensitizers appeared to be photodynamically ineffective. No enhancement of antistaphylococcal activity of TMPyP was observed after the conjugation of the porphyrin with lanthanide ions. Additionally, a significant difference in the susceptibility of two bacterial strains to unmodified TMPyP was observed.
The worldwide rise in the antibiotic resistance of bacteria forces the development of alternative antimicrobial treatments. A potential approach is photodynamic inactivation (PDI). The aim of the present study was to determine the phototoxicity of protoporphyrin diarginate (PPArg2) against methicillin-resistant Staphylococcus aureus and human dermal fibroblasts. Different concentrations (0 to 20 µM) of PPArg2 and light dose of 6 J cm -2 were tested. Cell viability was evaluated using the methylthiazoletetrazolium (MTT) assay. Incubation with 10 µM followed by illumination yielded a 3.6 log10-unit reduction in the viable count for Staphylococcus aureus. At the same experimental conditions, only 22.5% of the fibroblasts were photoinactivated. Protoporphyrin diarginate at concentrations up to 20 µM demonstrated no toxicity towards S. aureus or fibroblasts when not irradiated. These results suggest that the protoporphyrin diarginate exerts a high bactericidal effect against methicillin-resistant S. aureus strain without harming eukaryotic cells.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.