Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Salt usually stresses plants in two ways, osmotic stress and ion toxicity. Plant responds to salinity in two distinct phases through time. It is known that silicon (Si) could alleviate salt stress by decreasing the Na⁺ accumulated in the leaf. In order to determine the function of Si in the two-phase growth response (osmotic and ion toxicity) to salinity, we selected the wheat cultivar ‘‘Changwu 134’’ out of 10 wheat cultivars, and confirmed that it responds to salinity in two distinct phases through time. The fresh weight, leaf area, and leaf Na⁺ concentration were measured during 31 days of 120 mM NaCl supplemented with 1 mM Si treatment. The results revealed that the growth of plants under salinity conditions both with and without Si application were in accordance with the two-phase growth model. Si alleviated the salt stress in the both two-phase growth, but the alleviative effects were more pronounced in the osmotic stress phase than ion toxicity phase. These results clearly showed that Si can enhance plant salt tolerance by alleviating the salt-induced osmotic stress.
In order to ensure the safety and reliability of the horizontal brace of semi-submersible platform (SEMI) which functions as the supporting structure in SEMI, this article presents an elastic-plastic method to analyze the variations of the crack tip opening displacement, elastic zone and plastic zone of the cracked section of the horizontal brace under beam wave. The brace of the SEMI was assumed to be located a circumferential through crack at its boundary in this article. In addition, the cracked section of the brace has been divided into crack zone, tensile plastic zone, elastic zone and compressive plastic zone in the presented theoretical model. Moreover, the closed form of the solution has been found in this article which is especially suitable solving complicated problems in practical engineering application. Also, a typical new-generation SEMI that is in practical use was selected to analyze the variation tendency of the cracked brace’s parameters using the proposed model which could give good suggestion to semi-submersible platform designers and managers
Due to their theoretically identical genetic background, citrus callus and other plant tissues may share some mechanisms in the regulation of carotenogenesis. Thus, in order to gain further information on light regulation of carotenoids biosynthesis in citrus, the carotenoids and expression profiles of carotenogenesis in calluses of four citrus genotypes treated with light or dark were investigated. As a response to white light, results showed that carotenoids biosynthesis in callus of Red Marsh grapefruit (Citrus paradisi Macf.) was hampered, whereas callus of Tarocco blood orange (C. sinensis (L.) Osbeck) was sensitive to light by accumulating over 55% more carotenoids on average. Among the detected carotenoids, the biosynthesis of carotenes seemed to be more sensitive than that of xanthophylls. Expression profiles of eight carotenogenesis genes encoding phytoene synthase (PSY), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), carotenoids isomerase (CRTISO) etc. were investigated. Results revealed that PSY was up regulated in calluses of two sweet oranges, and down regulated in callus of Murcott tangor (C. reticulata × C. sinensis). Biochemical data in the three genotypes emphasized the PSY as a rate-limiting gene in the carotenogenesis. However, in the callus of Red Marsh grapefruit, PDS and ZDS might be the rate-limiting genes, and their transcripts were apparently inhibited by light, led to significant decreases in contents of β-carotene and total carotenoids irrelevant to transcription levels of PSY. Expression of CRTISO was light-induced, especially in the callus of Murcott tangor, and increased by nearly 12-fold. In conclusion, light regulates the expression of several carotenogenesis genes in citrus callus, but may not necessarily result in significant changes in carotenoids production.
Aging is associated with increased incidence of myocardial infarctions and impaired angiogenesis - new capillary blood vessel formation from preexisting vessels. The molecular mechanism(s) of aging-related impairment of angiogenesis are unknown. In the present study we focused on the mechanism of activation of the gene for vascular endothelial growth factor (VEGF - the most potent stimulator of angiogenesis) in young and aging myocardial microvascular endothelial cells (MMEC). Activation of VEGF gene in the cell nucleus is mediated in part by the transcription factor hypoxia-inducible factor 1 (HIF1). In order to activate VEGF gene, HIF1 must first be transported to the nucleus, but the mechanisms of this transport are unknown. We hypothesized that reduced VEGF gene activation and impaired angiogenesis in myocardium during aging can result from downregulation of the nuclear transport receptor - importin that leads to decreased transport of HIF1 to the nucleus. We examined in MMEC isolated from young (3 months of age) and aging (24 months old) Fisher F-344 rats: 1) in vitro angiogenesis; and 2) the expression of VEGF, importin and HIF1. Aging MMEC exhibited a 3.7-fold reduction in angiogenesis and a corresponding reduction in VEGF (by 3-fold) and importin (by 1.9-fold) levels compared to young MMEC. Aging MMEC also exhibited cytoplasmic accumulation (by 1.8-fold) of HIF1 protein, reduced HIF1 transport to the nucleus and decreased binding of HIF1 protein to the VEGF gene promoter. This study is the first demonstration of the downregulation of importin in aging MMEC and reduced nuclear transport of HIF1, which likely lead to decreased VEGF gene activation and impaired angiogenesis.
Methyl Bromide (MB) is one of the most effective and widely used commercial chemicals in agriculture and non-agricultural sectors respectively. The decision to phaseout MB by 2005 set the stage for scientists to come up with a non-less-toxic replacement alternative or combinations thereof. This study focused on comparing yield efficiencies of different MB substitute fumigants and mulching systems for pepper production in the Southeast. Results of this study depicted that pepper production is potentially maximized under the tel-pic-vap treatment which is the only fumigation method that yielded significant differences relative to at least one other alternative approach.
Ghrelin, a hormone produced mainly by gastric mucosal cells stimulates growth hormone (GH) release. Ghrelin is also expressed in the endothelial cells of blood vessels suggesting its physiological role and a function in these cells. We recently demonstrated that ghrelin induces angiogenesis - new capillary blood vessel formation- in neonatal human microvascular endothelial cells (HMVECs). Angiogenesis is impaired in aging individuals both in vitro and in vivo, but the precise mechanism(s) of this phenomenon is unknown. We examined whether HMVECs derived from aging individuals (66 years and 90 years old), 66-HMVECs and 90-HMVECs have reduced ghrelin levels vs. neonatal (Neo) HMVECs and whether treatment with exogenous ghrelin can restore impaired in vitro angiogenesis on matrigel in aged HMVECs. Ghrelin levels were reduced in the aged HMVECs by 3.2-fold (p<0.05) compared to Neo-HMVECs. Angiogenesis was significantly decreased in the aged 66- and 90-HMVECs by 39.7% (p = 0.003) and 62.4% (p = 0.003), respectively compared to Neo-HMVECs. Treatment with exogenous ghrelin significantly reversed impaired angiogenesis in aged HMVECs with the EC50 0.05 nM. Ghrelin induced angiogenesis in Neo-HMVECs mainly through ERK2 activation. This study is the first demonstration that reduced ghrelin is one of the factors responsible for aging-related impairment of angiogenesis.
Competition among trees is a fundamental interaction process within plant community, which is the theoretical basis of thinning. Plant competitive intensity is generally measured using a competition index (CI) that can be classified into two major categories: distance-independent and distance-dependent. The current study used Cunninghamia lanceolata (Lamb.) Hook as the test subject and used Hegyi's CI (distance-dependent), to quantify individual CI and their relationship with tree diameter at breast height (DBH). Five different criteria were used to select potential competitors for the calculation of CI. Seven basic linear and nonlinear mathematical functions were used to test and quantify the relationships between DBH of the target tree and the individual CI. Results showed that individual CI was negatively correlated with target tree DBH: as DBH increased, competition intensity weakened. The adjusted R² with five different criteria of selection competitors simulated by seven functions ranged from 0.30 to 0.82. Considering the root mean square error (RMSE), P-value, and adjusted-R², our results suggested that the best model to simulate the relationship between individual CI and focal tree DBH was power function (CI = 43.98 × DBH⁻¹‧⁰⁸, adjusted R² = 0.81) and with the Voronoi diagram method as the criteria for selecting competitors. These results can demonstrate a clearer understanding of the spatial structure of forests, and can be used to guide the selection of thinning trees in the process of thinning practice.
Phosphorus (P) is an essential macronutrient for plant growth and development; however, soil P available for plant absorption is often limited, putting constraints over agricultural sustainability. Understanding the physiological and molecular responses to P deficiency can help design strategies for diagnosis and mitigation of P deficiency in crop plants. The advent of the next-generation sequencing technologies has made it possible to characterize genome-wide molecular responses to P deficiency in plants. However, such research efforts are very limited for woody crops. In this study, RNA-seq was used to investigate P starvation-induced transcriptomic changes in roots of a frequently used citrus rootstock, Poncirus trifoliata (L.) Raf. A total of 1,135 genes showed differential expression in response to P deficiency. The transcriptomic data were further validated by real-time quantitative RT-PCR. Interestingly, at least one or more P-responsive cis-elements (P1BS) were found in the promoter regions of 76 differentially expressed genes. Functional annotation revealed that the predicted proteins of 117 of the differentially expressed genes were assigned to the categories of transporters, transcription factors or components involved in plant hormone signal regulation, suggesting that these genes may play important roles in response to P starvation. A comparative analysis of the citrus- and Arabidopsis-responsive transcripts under P deficiency also identified 174 commonly regulated genes, including those involved in P metabolism. Taken together, our transcriptomic data revealed changes of genome-wide gene expression in responses to P starvation in Poncirus, which should provide a solid basis for future identification and characterization of key genes involved in nutritional stress response in citrus rootstocks.
13
Content available remote

Locomotor activity and behavior of mutant mice deleted for gastrin gene expression

76%
The current studies were initiated to investigate the role of brain-gut peptide, gastrin, on locomotor activity and anxiety-like behavior. Young, male mutant mice, lacking gastrin gene expression (GAS-KO mice), were used in the experiments. The locomotor activity of GAS-KO vs wild type (WT) mice was compared by open field test. The anxiety-like behavior was examined using elevated plus maze. The time and entries to the open arms of the elevated plus maze were used as an indicator for the anxiety-like behavior and the data were analyzed using Hindsight program. On the open field test, locomotor activity of GAS-KO mice was similar to that of the WT mice for the first 10 min of the test, but decreased significantly after that. Anxiety-like behavior was more evident in the GAS-KO vs WT mice in the elevated plus maze experiments. The number of entries to and time spent on the open arms of plus-maze were significantly reduced for the GAS-KO vs WT mice suggesting an increased anxiety-like behavior of GAS-KO mice. Our studies suggest that normal circulating levels of gastrins may play a direct or indirect role in the regulation of locomotor activity and anxiety-like behavior.
Wheat (Triticum aestivum L.) is one of the top three food crops in the world. Studies have revealed that wheat endosperm development undergoes programmed cell death (PCD) process development that may be influenced by PCD. Waterlogging and exogenous hydrogen peroxide (H₂O₂) treatment exacerbates wheat endosperm PCD, whereas PCD acceleration is significantly inhibited by reactive oxygen species (ROS) scavengers. To explore the physiological mechanism of waterlogging resistance in wheat, the effects of exogenous H₂O₂, ascorbic acid (AsA), and cyclosporin A (CsA) treatment on ROS content, antioxidant enzyme activity, release of cytochrome c, and caspase-like protease activity in the endosperm of Huamai 8 (waterlogging-tolerant wheat cultivar) and Huamai 9 (waterlogging-sensitive wheat cultivar) were studied. The results showed that exogenous H₂O₂ treatment resulted in an increase in ROS content, antioxidant enzyme activity, mitochondrial membrane permeability, release of cytochrome c, and caspase-like protease activity in the endosperms of both wheat cultivars, which eventually exacerbated PCD. Compared to Huamai 8, the increase in ROS content in Huamai 9 was more significant, whereas changes in antioxidant enzyme activity, cytochrome c release, mitochondrial membrane permeability, and caspase-like protease activity were smaller. Exogenous AsA treatment leads to the content of H₂O₂ and catalase activity decrease, which could inhibit endosperm cell death to some extent. CsA treatment effectively inhibited the increase in H₂O₂ content, antioxidant enzyme activity, release of cytochrome c, and caspase-like protease activity caused by exogenous H₂O₂ treatment, which in turn inhibited cell death. In summary, exogenous H₂O₂ treatment aggravates endosperm PCD, and Huamai 9 exhibited higher ROS accumulation and a weaker antioxidant enzyme system under external stress, which may be the mechanisms underlying its sensitivity to waterlogging. CsA effectively inhibited the increase in ROS, antioxidant enzyme activity, cytochrome c release, and cell death. It is possible that in wheat endosperm, mitochondria in a similar way to animal mitochondria release cytochrome c regulating PCD.
To provide a theoretical and practical foundation for ramie genetic analysis, simple sequence repeats (SSRs) were identified in the ramie genome and employed in this study. From the 115 369 sequences of a specific-locus amplified fragment library, a type of reduced representation library obtained by high-throughput sequencing, we identified 4774 sequences containing 5064 SSR motifs. SSRs of ramie included repeat motifs with lengths of 1 to 6 nucleotides, and the abundance of each motif type varied greatly. We found that mononucleotide, dinucleotide, and trinucleotide repeat motifs were the most prevalent (95.91%). A total of 98 distinct motif types were detected in the genomic-SSRs of ramie. Of them, The A/T mononucleotide motif was the most abundant, accounting for 41.45% of motifs, followed by AT/TA, accounting for 20.30%. The number of alleles per locus in 31 polymorphic microsatellite loci ranged from 2 to 7, and observed and expected heterozygosities ranged from 0.04 to 1.00 and 0.04 to 0.83, respectively. Furthermore, molecular identity cards (IDs) of the germplasms were constructed employing the ID Analysis 3.0 software. In the current study, the 26 germplasms of ramie can be distinguished by a combination of five SSR primers including Ibg5-5, Ibg3-210, Ibg1-11, Ibg6-468, and Ibg6-481. The allele polymorphisms produced by all SSR primers were used to analyze genetic relationships among the germplasms. The similarity coefficients ranged from 0.41 to 0.88. We found that these 26 germplasms were clustered into five categories using UPGMA, with poor correlation between germplasm and geographical distribution. Our study is the first large-scale SSR identification from ramie genomic sequences. We have further studied the SSR distribution pattern in the ramie genome, and proposed that it is possible to develop SSR loci from genomic data for population genetics studies, linkage mapping, quantitative trait locus mapping, cultivar fingerprinting, and as genetic diversity studies.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l-1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.