Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Autism Spectrum Disorders (ASDs) comprise a heterogeneous group of neuro-developmental abnormalities with a strong genetic component, characterized by deficits in verbal and non-verbal communication, impaired social interactions, and stereotyped behaviors. In a small percentage of cases, ASDs are associated with alterations of genes involved in synaptic function. Although rare, these point to synapses as possible sites of ASDs origin. One class of non‑syndromic forms of ASDs has been found to be associated with mutations/deletions of genes encoding for neuroligins (NLGs). These are postsynaptic adhesion molecules that, interacting with their presynaptic partners neurexins, ensure the cross-talk between pre- and post-synaptic specializations and synaptic stabilization, necessary for maintaining a proper excitatory/inhibitory balance within local neuronal circuits. Here, transgenic mice carrying the R451C mutation of NLG3 (NLG3R451C KI) or lacking NLG3 (NLG3 KO mice), found in some families with autistic children, were used to study GABAergic signaling in the hippocampus at early stages of postnatal development. We hypothesized that activity‑dependent alterations in synaptic plasticity processes represent a convergent mechanism underlying neuro-developmental disorders including ASDs. Unlike littermate controls, NL3R451C KI and NLG3 KO pups failed to exhibit LTP following spike time dependent plasticity, a particular Hebbian type of learning, at immature hippocampal mossy fiber-CA3 synapses, known to express, at early developmental stages, a GABAergic phenotype. These results were associated with a dysfunction of BDNF/ TrkB signaling and could be rescued by exogenous application of BDNF. These data clearly show that an early dysfunction GABAergic signaling leads to alterations in the functional refinement of developing circuits and synaptic plasticity processes possibly underlying cognitive deficits in autistic children.
The construction of the brain relies on genetic and environmental factors “nature and nurture”. While nature provides a set of genes that control the general organization of the brain, nurture ensures that genetically built neuronal circuits adapt to the environment. Learning constitutes an adaptive process involving activity-dependent mechanisms regulating several developmental steps, including synapses formation and elimination. One of the main actors in these processes is the neurotransmitter GABA, which inhibits adult neurons but depolarizes and excites immature ones because of high intracellular chloride concentration. In synergy with glutamate GABA gives rise to coherent network oscillations which are instrumental in enhancing synaptic efficacy at emerging glutamatergic and GABAergic pathways. A premature shift of GABA from the depolarizing to the hyperpolarizing direction severely impairs the morphological maturation of cortical cells. In addition, a dysfunction of GABAergic signaling early in postnatal development leads to an excitatory/inhibitory unbalance a condition that may account for some of the behavioral deficits observed in neuro-developmental disorders such as Autism Spectrum Disorders (ASD). ASD comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, marked impairment in verbal and non-verbal communication, social skills and cognition. Interestingly, in a small number of cases, ASD are associated with single mutations in genes involved in synaptic transmission, including single mutations of genes encoding for synaptic cell adhesion molecules of the Neurexin-Neuroligin families and for Shank3. Although rare, these mutations provide crucial information on the synaptic abnormalities which possibly affect ASD patients and point to synapses dysfunction as a possible site of autism origin.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.