Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Festuca arundinacea (Fa) is one of the most drought-tolerant species within the Lolium-Festuca complex. In the current work the protein level of chloroplastic Cu-Zn SOD (superoxide dismutase) in two Fa plants with extreme values of drought tolerance during exposition to water deficit was investigated. The obtain results revealed higher level of enzyme accumulation in more drought-tolerant Fa genotype. In less-drought tolerant plant the increase of dismutase level during stress treatment was only slight.
PsbO, the manganese-stabilizing protein, plays a crucial role in oxygen-evolving complex functioning and stabilization, by maintaining optimal manganese, calcium and chloride concentrations at the active state of PSII. In this paper we present a study focused on recognizing the relationship between psbO gene activity and acclimation of the photosynthetic apparatus under abiotic stresses in the grasses Festuca arundinacea and F. pratensis. PsbO expression was compared between two distinct genotypes within each species which differed in their levels of stress tolerance (drought and frost, respectively) during drought treatment (F. arundinacea) and cold acclimation (F. pratensis). The research involved: (1) the analyses of psbO gene expression profiles using real-time PCR, and (2) the analyses of PsbO protein accumulation profiles using protein gel blot hybridization. The results indicate that PsbO plays a protective function with respect to the photosynthetic apparatus during abiotic stresses. In cold-treated F. pratensis plants the accumulation of PsbO seems to be responsible for differences in the PSII photochemical efficiency. Higher stability of PSII during drought, observed in the high-drought tolerant F. arundinacea genotype, is not associated with PsbO accumulation, although the degradation of this protein affects destabilization of the oxygen-evolving complex in drought.
A gene fusion system was used to study the expression pattern of the Dhn10 gene, encoding the DHN10 dehydrin protein in transgenic Solanum tuberosum plants carrying a combined GT-Dhn10 transgen in which the glucosyl transferase (GT) promoter region was fused to the coding sequence of the Dhn10 gene. Expression of the native Dhn10 gene and the GT-Dhn10 constructs was analysed in regenerated S. tuberosum transgenic plants, both at the transcript accumulation and protein levels. We showed that the expression of both the GT-Dhn10 transgen and the Dhn10 gene was regulated in the regenerated plants at the transcriptional level in an independent way, but only the protein product of the native Dhn10 expression was detected. The transcription product of the GT-Dhn10 transgen did not affect the expression of the Dhn10 gene either at the transcription level or at the protein level. The GT-Dhn10 plants did not show changes in freezing capacity compared to the control, non-transgenic ones.
The expression pattern of a Solanum sogarandinum pGT::Dhn10 gene fusion encoding a dehydrin DHN10 protein and the potential role of that protein in cold tolerance in cucumber were analysed in three T1 transgenic lines. An accumulation of Dhn10 mRNA was detected in the leaves, cotyledons, hypocotyls and roots of the transgenic seedlings both under the control conditions and after a cold treatment at 6oC for 24 h. This was confirmed by RTPCR. However, no DHN10 protein was detected by the alkaline phosphataseconjugated antibody. The transgenic lines exhibited different levels of chilling tolerance. The TCC5/1 line showed a significant increase in its chilling tolerance compared to the non-transgenic line. No chilling injury was observed when the cold hardened (6oC, 24 h) TCC5/1 plants were subsequently exposed to a temperature of 2oC for 6 h. The other two transgenic lines, TCC2/1 and TCC3/2, exhibited a comparable level of chilling tolerance to that of the non-transgenic control. The transgenic lines showed similar or significantly decreased freezing tolerance compared to the non-transgenic control, as evaluated by an electrolyte leakage test. We concluded that the S. sogarandinum GT promoter is functional in the chilling sensitive species Cucumis sativus L., and that the pGT::Dhn10 gene fusion is expressed at the transcriptional level.
The aim of this research is a genetic mapping of the STS markers derived from a model legume Medicago truncatula Gaertn. in lupin crop (Lupinus angustifolius L.). This study was undertaken within the framework of VI EU „Grain Legumes Integrated Project” (GLIP). The mapping population consists of 89 recombinant inbred lines of a cross between a domesticated line and a wild type (83A:476 x P27255). STS markers were generated by the PCR, using primer pairs designed on the basis of M. truncatula and P. sativum genomic sequences. Up till now 257 primer pairs designed and delivered by the Hungarian partner of the project have been tested. Most of the primers amplified a monomorphic product. In the case of 29 detected polimorphic products, segregation of alleles could be analyzed in the whole mapping population. 22 of these markers were located on the genetic linkage map based on the MFLP markers constructed by the Australian group. The position of the remaining 6 markers is still uncertain. Supplementing the published map with the STS markers increased its length to 1953 cM and the average marker distance into 4.1 cM.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.