Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Satellite cells (myogenic stem cells) dissociated from adult muscle tissue proliferate, fuse and form multinucleate myotubes when placed in culture. This study focused on the role of talin distribution during the differentiation of satellite cells. Talin plays a key role in anchoring actin filaments to integrins as well as to the plasma membrane in focal contacts. We demonstrated that there is a colocalization of talin and phosphoserine residues during the differentiation of satellite cells, and that it changes after TPA (a protein kinase C activator) treatment, and showed that talin existing in the cell-extracellular matrix and cell-cell contact area was not phosphorylated. In the presence of TPA (24 and 48 h exposure) the level of colocalization of both talin and phosphoserine residues was the same in the treated cells and in the control cells, but the level of talin phosphorylation was higher in the treated cells. We found that in myotubes from TPA treated cultures (144 h exposure to TPA), talin had localized near the cell membrane in the absence of phosphoserine residues, and that the level of talin phosphorylation was lower than in the control cells. We also demonstrated that the expression of talin during satellite cell differentiation was constant in both the control and TPAtreated cells.
Calpains — non-lysosomal intracellular calcium-activated neutral proteinases, form a family consisting of several distinct members. Two of the isoenzymes: ji (calpain I) and m (calpain II) responded differently to the injury during complete regeneration of Extensor digitorum longus (EDL) muscle and partial regeneration of Soleus muscle. In the crushed EDL the level of m-calpain on the 3rd and 7th day of regeneration was higher than in non-operated muscles, whereas the activity of this calpain in injured Soleus decreased. The level of n-calpain in EDL oscillated irregularly during regeneration whereas in Soleus of both injured and contralateral muscles its level rapidly rose. Our results support the hypothesis that m-calpain is involved in the process of fusion of myogenic cells whereas u-calpain plays a significant but indirect role in muscle regeneration.
It was shown that syndecans have a potential role in muscle development. We focused this study on the role of syndecan-4 distribution and phosphorylation during the differentiation of satellite cells isolated from Soleus muscle. Syndecans are cell surface heparan sulfate proteoglycans (HSPGs) that bind numerous ligands through their HS glycosaminoglycan chains (GAG). They play a role in cell-extracellular matrix and cell-cell adhesion, signal transduction and the targeting of growth factors and other molecules to the cell surface. Syndecan-4 acts as a co-receptor or, along with integrins, is localized to the cell membrane of focal contacts. Syndecan-4 participates in the organization of the structure of focal contacts reacting with extracellular matrix molecules. The interaction of syndecan-4 with protein kinase C (PKC) isoforms is the main mechanism regulating its distribution in cells. Our current study focused on the role of the distribution of syndecan-4, and its interactions with PKC isoforms during the differentiation of activated satellite cells. We used the PKC activator TPA (12-O-tetradecanoyl phorbol 13-acetate) and the PKC inhibitor Calphostin C (Cal C). We concluded that syndecan-4 was important not only in the activation of satellite cells, but also in myoblast differentiation. During our research, we observed the presence of syndecan-4 and changes in its location over the course of that process. We also showed that TPA and Cal C treatment had an influence on the subcellular distribution of syndecan-4, but there was no influence on myoblast differentiation. We speculated that the reason for changes after TPA treatment was the interactions with activated PKCα, which provoked syndecan-4/PKCα complex translocation to integrins. We also supposed that Cal C treatment inhibited PKCδ activity and probably induced PKCα association to syndecan-4, and syndecan-4 translocation to integrins.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.