Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Diesel engines are widely used for propulsion on large ships, which has the undesired characteristic of generating large amounts of harmful emissions. To reduce these emissions, some alternative fuel was developed and used in a marine diesel engine. In this study, an experiment was carried out on a 6-cylinder turbocharged direct-injection marine diesel propulsion engine. A small proportion blend of biodiesel-diesel was used, aimed at exploring the emission characteristics and emission reduction mechanism for diesel propulsion engines. The results show that the high oxygen content of biodiesel blend is crucial for inhibiting the formation of particulate matter (PM) and reducing the formation of total unburned hydrocarbon (THC) and carbon monoxide (CO), which reduces the emission of harmful gases. At the same time, the number of particles (PN) has also decreased. However, the rapid burn rate of biodiesel was found to reduce brake thermal efficiency (BTE), resulting in an increase of fuel consumption and exhaust gas temperature (EGT), which can promote the formation of nitrogen oxides (NOx). More carbon dioxide (CO2) is released due to the increased fuel consumption. The emission characteristics of the biodiesel blend and diesel fuel are discussed in this work.
We combined dendrochronological methods and interannual d13C measurements to investigate radial growth and physiological responses of Schrenk spruce (Picea schrenkiana) in response to rising atmospheric CO2 concentration (Ca) and changing climate in high-elevation forests in China’s western Tianshan Mountains. The mean maximum temperature in May to August, reconstructed from d13C, revealed an overall warming trend, with persistent warm periods from 1910 to 1920, and from 1970 to 1980. Intrinsic water use efficiency (iWUE) increased by 28 % over the last 160 years; temporal trends in iWUE were calculated under three theoretical scenarios as a baseline for interpreting the observed gas-exchange at increasing Ca. Basal area increment (BAI) increased by 51.4 % since 1850 with two apparent increases and decreases. Trees exhibited sharp declines in BAI along with enhanced iWUE during the warmer periods; this was possibly due to a reduced stomatal conductance which prevented excessive water loss from trees. Conversely, BAI increased at reduced iWUE (-3.6 %, -7.4 %) during two cold-wet periods (e.g., 1880 to 1992, and 1945 to 1960), suggesting that a diminished water stress caused the observed growth pattern. However, BAI increased significantly (49.4 %) from 1965 to 1983 with constant intercellular atmospheric CO2 concentrations (Ci) response scenario under acute water limitations, indicating the CO2 stimulation of tree growth. These results showed that even at high elevations, increased iWUE may not lead to longterm enhancement of tree growth, and other factors may counteract CO2-fertilization effects, especially those related to a warming-induced drought. The results of this study suggest that the current models may overestimate the sink capacity of temperate forests, and indicate that multi-proxy records are needed to disentangle the role of a limiting factor in modulating the response of the Schrenk spruce forest to current climate change scenarios.
Light oil (isooctane) removal using soil vapor extraction (SVE) enhanced bioremediation (BR) was investigated by four steps, including: (i)amendment of substrates in batches (ii)continuous induction of contaminants for 15 days (iii)in situ acclimation for 100 days (iv)biodegradation assisted with SVE venting for 120 h at 20 m³∙h⁻¹ Results showed that the total removal efficiency was up to 90% after BR-SVE treatments. BR contributed predominantly to isooctane removal during the last 36 h of BR-SVE treatment. This implied that it would be an important strategy to limit water content at the early stage while increasing water supply at the end stage during implementation of BR-SVE, because water content was a significant factor hindering SVE but favoring BR. The overall results demonstrated a good complementarity between SVE and BR, and a potential for their combination in real-world applications.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.