Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This paper evaluates the environmental impacts of various municipal solid waste (MSW) treatment options produced on-site simultaneously with energy and material recovery. The results present a comparison of life cycle assessment (LCA) for municipal solid waste management (MSWM) in five different waste scenarios along with baseline scenario of the Defence Housing Authority (DHA) in Lahore. All scenarios were modeled using EaseTech software. Nine impact categories were assessed and results were presented based on the ASTM D5231-92(2003) characterization method. Results revealed that a material recovery facility (MRF) had low global warming potential (GWP), but lower avoided burdens in other impact categories. The incineration process indicated fewer burdens on the environment such as GWP (-2.086×10⁷ kg CO₂ eq) as compared to landfills (2.461×10⁷ kg CO₂ eq). This was due to lower avoided emissions in the landfill process compared to incineration. The negative values in results represented higher avoided emissions in treatment processes. Bio-gasification avoided CO₂ emissions (-8.053×10⁵ kg CO₂ eq), but showed negative impacts in other categories. Almost all impact categories were high in composting except for freshwater eutrophication. LCA results provided good knowledge for decision makers as a tool to decide what alternative is a better change for sustainable waste management.
The present research deals with the synthesis and viability of Sawdust biochar/Fe3O4 nanocomposite toward textile waste water treatment. The structure, functionality, and morphology of the nanocomposite were determined by FT-IR, powder XRD, and SEM. Removal of the textile dye Reactive Blue 21 (RB21) was almost 75% under optimum conditions. The value of Langmuir dimensionless separation factor RL indicated a favorable adsorption (01), hence denoting favorable sorption. The negative values for free energy indicated a spontaneous reaction. Positive value for enthalpy suggested the endothermic nature of adsorption. The kinetic data showed a pseudo first-order kinetic model. The calculated value of qt agreed with the experimental value of qt at equilibrium. The results depicted that sawdust biochar/Fe3O4 nanocomposites are efficient adsorbents for removing RB21 and has potential application in treatment of textile wastewater.
The basic aim of our research was to reduce water consumption in the dying process in the textile industry. This study evaluated the treatment efficiency of combined process of chemical coagulation and electrocoagulation on the synthetically produced dyes C.I. Reactive Yellow 145 and C.I Reactive Red 194. The wash-off liquor generated during the dyeing process was decolorized by adding a mixture of alum and chitosan, followed by electrocoagulation and reused for the wash-off of dyes. Fabric color was analyzed by wash fastness, rubbing and crocking experiments. The combined treatment process was proven to be very effective in decolorizing both dyes by 99.1% and 96.15%. The color difference values of standard (dyed in fresh water) and batch samples for both dyes were 0.53 and 0.35, which is within the acceptable limit (≤1.0). The wash fastness test indicated a range of 4-5 for both standards and batch samples. In the case of water quality parameters, a decrease in pH values was observed after treatment; however, an increasing trend was seen in cases of COD, TDS and EC. While these parameters do not affect the color of the fabric in dying process, this study concludes that the combined treatment of chemical and electrocoagulation is very efficient for decolorizing dye wastewater. Reuse of treated wash-off wastewater is suitable not only for reducing water consumption but also reducing wastewater generation in the textile industry. Hence this treatment option will improve overall water efficiency of the textile industry.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.