Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 55

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
4
100%
Global climate changes which has been observed over the recent years affects organisms occurring in the Arctic seas and the functioning of the whole maritime ecosystems there. The research note presents and briefly analyses the biological diversity of the Arctic Ocean and the most important factors which change the relations between organisms and the environment in the Arctic.
This work presents biological information for polar cod (Boreogadus saida) collected with a Campelen 1800 shrimp bottom trawl in Kongsfjorden (two stations located in the inner part of the fjord adjacent to the glacier) and Rijpfjorden (one station at the entrance to the fjord) in September and October 2013. The otolith-based ages of polar cod collected in Kongsfjorden (6.1–24 cm total length TL; n = 813) ranged from 0 to 4 years. The growth rate was relatively constant at approximately 4.7 cm year−1 between years 1 and 4, which indicates that growth was fast in the glacier area. The ages of polar cod collected in Rijpfjorden (8.6–15.9 cm TL; n = 64) ranged from 2 to 3 years. The fish from Rijpfjorden were smaller at age than those from Kongsfjorden, and their growth rate between years 2 and 3 (no other age classes were available) was approximately 3.3 cm year−1. In both fjords, males and females were of the same size-at-age and the same weight-at-TL. The small sampling area means that the results on growth rate are not representative of the entire fjords. Instead, the results can be discussed as presenting the possible growth rates of some populations. A strong relationship was identified between otolith size (length and weight) and fish size (TL and TW), with no differences between males and females or the fjords. A significant, strong relationship was also noted between fish and otolith growth rates.
We present the results of species distribution modeling conducted on macrobenthic occurrence data collected between 2002 and 2014 in Arctic fjord – Hornsund. We focus on species from Mollusca and Crustacea taxa. This study investigates the importance of individual environmental factors for benthic species distribution, with a special emphasis on bottom water temperature. It aims to verify the hypothesis that the distribution of species is controlled by low water temperatures in the fjord and that the inner basins of the fjord serve as potential refugia for Arctic species threatened by the climate change-related intensification of warmer water inflows. Our results confirm the importance of bottom water temperature in regulating the presence of benthic fauna in the Hornsund fjord. The distribution of studied species is clearly related to specific water mass – colder (<1°C) or warmer (>1°C); and the preferred temperature regimes seem to be species specific and unrelated to analyzed groups. This study supports the notion that inner basins of the Hornsund fjord are potential refugia for cold water Arctic fauna, while the outer and central basins provide suitable habitats for fauna that prefer warmer waters.
15
51%
Two fjords in West Spitsbergen (Hornsund 77°N and Kongsfjorden 79°N) differ with regard to their exposure towards increasingly warm Atlantic water inflow. Hornsund remains in many respects cooler than Kongsfjorden (on average 2°C SST in summer) and is less influenced by warmer and more saline Atlantic waters. Reported changes in the physical environment (temperature rise, freshwater inflow, salinity drop, turbidity, fast-ice reduction, coastal change) are discussed in the context of biological observations in the pelagic and benthic realms with special reference to krill (Euphausiacea). We conclude that well-documented changes in the physical environment have had little effect on the fjord biota and that both organisms and their ecological functions in the fjords are well adapted to the scale of ongoing change. The observed changes fit the definition of ecosystem maturation, with greater diversity, a more complex food web and dispersed energy flow at the warmer site.
The food and foraging strategy of fifteen species of seabirds and sea mammals from two high Arctic fjords were analysed. One of the fjords, Kongsfjord, is strongly influenced by warm waters from the Atlantic, while Hornsund is of a more Arctic character. Prey species in the Atlantic waters were more diverse (82 species and 16 functional groups) compared to those of Arctic waters (67 prey species and 14 functional groups). The consumption of top predators from Hornsund in the peak season of July was estimated at 2.86*106 MJ, while that in Kongsfjord was 1.35*106 MJ. For the analysed function of the ecosystem (the transfer of energy to the top trophic levels) the specific character of prey species is of key importance and not the diversity, abundance or biomass per se. Lower species diversity and biomass in Arctic waters is compensated for by the occurrence of larger individuals of these species, which permits top predators to prey directly on lower trophic levels.
Bacterial production and the accompanying environmental factors were measured in the water columns of two Arctic fjords during the cruise in July and August 2013. Water samples were collected at six stations located in the central part of Hornsund and Kongsfjorden. In Hornsund, where average water temperatures were 1.25-fold lower than in Kongsfjorden, the bacterial production was twice as high (0.116 ± 0.102 vs 0.05 ± 0.03 mg C m−3 h−1). Statistical analysis indicated that chlorophyll a concentration itself was not a significant factor that affected bacterial production, in contrast to its decomposition product, pheophytin, originating from senescent algal cells or herbivorous activity of zooplankton. Single and multiple regression analysis revealed that water temperature, dissolved organic carbon (DOC), and pheophytin concentration were the main factors affecting bacterial production in both fjords.
This paper presents the results of 15 zooplankton tows collected with a Tucker Trawl (1 m2 opening, net of 2 mm mesh size) in Kongsfjorden (79◦N), Svalbard archipelago. The hydroacoustic survey revealed clear differences between the plankton concentrations in the outer and inner fjord basins. Plankton concentrations and fish were observed in the outer fjord, while uniformly scattered objects were detected in the inner basin. The macroplankton community was dominated by Euphausiacea (Thysanoessa inermis, Thysanoessa rashii), Amphipoda (Themisto libellula) and Pteropoda (Limacina helicina). Other taxa were of minor numerical importance. The macroplankton abundance reached 3300 indiv. 100−1 m−3 with a maximum biomass of 100 g wet weight 100−1 m−3 (over 440 kJ 100−1 m−3). L. helicina was advected into the fjord with surface waters, and was found in large abundance (1000 indiv. 100−1 m−3) in the subsurface layers of the inner basin. Euphausids were present in small numbers at the entrance to the fjord, but were found to be very abundant (600 indiv. 100−1 m−3) at the innermost stations, especially in the surface water layer. The estuarine circulation driven by the glacial meltwater discharge is believed to cause the entrapment of zooplankton in the inner fjord basin.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 3 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.