Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Greig cephalopolysyndactyly syndrome (GCPS) and isolated preaxial polydactyly type IV (PPD-IV) are rare autosomal dominant disorders, both caused by mutations in the GLI3 gene. GCPS is mainly characterised by craniofacial abnormalities (macrocephaly/prominent forehead, hypertelorism) and limb malformations, such as PPD-IV, syndactyly and postaxial polydactyly type A or B (PAPA/B). Mutations in the GLI3 gene can also lead to Pallister–Hall syndrome (PHS) and isolated PAPA/B. In this study, we investigated 16 unrelated probands with the clinical diagnosis of GCPS/PPD-IV and found GLI3 mutations in 12 (75 %) of them (nine familial and three sporadic cases). We also performed a detailed clinical evaluation of all 12 GLI3-positive families, with a total of 27 patients. The hallmark triad of GCPS (preaxial polydactyly, macrocephaly/prominent forehead, hypertelorism) was present in 14 cases (52 %), whereas at least one typical dysmorphic feature was manifested in 17 patients (63 %). Upon sequencing of the GLI3 gene, we demonstrated eight novel and two previously reported heterozygous point mutations. We also performed multiplex ligation-dependent probe amplification (MLPA) to screen for intragenic copy number changes and identified heterozygous deletions in the two remaining cases (16.7 %). Our findings fully support previous genotype–phenotype correlations, showing that exonic deletions, missense mutations, as well as truncating variants localised out of the middle third of the GLI3 gene result in GCPS/PPD-IV and not PHS. Additionally, our study shows that intragenic GLI3 deletions may account for a significant proportion of GCPS/PPD-IV causative mutations. Therefore, we propose that MLPA or quantitative polymerase chain reaction (qPCR) should be implemented into routine molecular diagnostic of the GLI3 gene.
Oculodentodigital dysplasia (ODDD) (OMIM #164200) is a rare congenital, autosomal dominant disorder comprising craniofacial, ocular, dental, and digital anomalies. The syndrome is caused by GJA1 mutations. The clinical phenotype of ODDD involves a characteristic dysmorphic facies, ocular findings (microphthalmia, microcornea, glaucoma), syndactyly type III of the hands, phalangeal abnormalities, diffuse skeletal dysplasia, enamel dysplasia, and hypotrichosis. In a Polish child with the clinical symptoms typical of ODDD, we demonstrated a novel missense mutation C.C31A resulting in p.L11F substitution. Our report provides evidence on the importance of this highly conserved amino acid residue for the proper functioning of GJA1 protein.
We report on a 2-year-old Polish girl with typical manifestations of Loeys-Dietz syndrome (LDS), a rare genetic condition belonging to the group of Marfan-related disorders. The characteristic LDS symptoms observed in the girl included craniofacial dysmorphism (craniosynostosis, cleft palate, hypertelorism), arachnodactyly, camptodactyly, scoliosis, joint laxity, talipes equinovarus, translucent and hyperelastic skin, and umbilical hernia. Mild dilatation of the ascending aorta and tortuous course of the left internal carotid artery were recognized during her second year of life. Molecular genetic testing revealed a heterozygous missense mutation (c.1582C>T, p.R528C) in the transforming growth factor beta receptor II gene (TGFBR2). This mutation has been previously associated with LDS in 5 unrelated cases, and was never reported in patients with other Marfan-related disorders. Comparison of the phenotypes of our patient and these 5 individuals with c.1582C>T showed that only the hallmark triad of the syndrome - consisting of hypertelorism, aortic root dilatation/aneurysm, and cleft palate or bifid uvula - was present in all 6 cases. Interestingly, none of the 5 individuals who underwent psychological evaluation showed developmental delay. The pattern of all other LDS features showed interindividual variability. Our data support the recently reported observation that symptoms of LDS can develop at a very young age, making early diagnosis and management essential for these patients. This is the first report on a Polish infant with typical LDS symptoms caused by a TGFBR2 mutation.
We report on 3 kindred patients with terminal 11q monosomy and distal 22q trisomy involving the SHANK3 gene, resulting from a subtle familial translocation t(11;22)(q24.2;q13.33). The patients presented with the characteristic symptoms of Jacobsen syndrome (JBS), including: mental retardation, short stature, and craniofacial dysmorphism in all 3 cases; cardiac defects in 2 cases; and thrombocytopenia, brain abnormality, eye coloboma, recurrent infections, cryptorchidism and toe anomalies in single cases. The oldest patient also had Hashimoto disease and diabetes mellitus type 2. So far, these 2 conditions have not been reported in adult patients with JBS. Features typical for distal 22q trisomy in our patients include muscular hypotonia and prenatal failure to thrive, seen in 2 and 1 cases, respectively. We also present a family member with 11q24.2-qter trisomy and 22q13.33-qter monosomy, whose clinical phenotype is partially overlapping with several dysmorphic features of JBS. In addition, multiple pregnancy losses and infantile deaths occurred in this family, suggesting that these chromosomal imbalances may produce a lethal phenotype. FISH with a panel of BAC probes determined the accurate sizes of the deletion 11q (9.9 Mb) and trisomy 22q (0.8 Mb). To date, only 5 cases of submicroscopic 22q13.3-qter trisomy have been reported. A detailed clinical description of our patients, along with a precise cytogenetic designation of chromosomal breakpoints, allow further refinement of genotype-phenotype correlation for distal imbalances in 11q and 22q.
In 1997, the Polish Registry of Congenital Malformations (PRCM) was established, to fulfil epidemiological, prophylactic, socioeconomic and scientific functions. The PRCM is a population-based registry monitoring currently about 300 000 births a year in 13 provinces. Such a large area and population require a special organizational structure of the Registry. The PRCM Central Working Group and the computer database are located in the Department of Medical Genetics, University of Medical Sciences, Poznań. Here the data are collected, validated, encoded according to the ICD-10, and analysed. Provincial Working Groups are responsible for supervision of data collection in the given province. The PRCM staff has grown from about 250 members in 1997 to more than 400 members today. The PRCM collects information on structural defects diagnosed before the end of the second year of life. Minor anomalies are excluded from the registry. The main source of information is a registration form filled up by the physician diagnosing the anomaly. Since 2004 also electronic reporting has been possible. On 28 September 2005 there were 54 020 entries in the database concerning 33 729 children with at least one congenital malformation and 1261 control entries concerning children without malformations. The PRCM is also an important source of identification of families at genetic risk. Education of physicians and the community in the field of genetic counselling is also an important aim of the PRCM. Since 2001, the PRCM has been a member of the Eurocat. Detailed information on PRCM organization, electronic reporting, and results are available at the PRCM website (www.rejestrwad.pl).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.