Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Cadmium (Cd) tolerance and accumulation in wheat varieties were investigated at seedling stage under a controlled environmental condition. The 46 leading wheat varieties cultivated from the 1950s to 2000s in China were treated at the three-leaf stage with a 50 µM CdCl₂ solution for 24 days. Growth and photosynthesis parameters were measured and the Cd-tolerance index (ratio of a given parameter under Cd treatment to that of the control) was determined. Cd accumulation in shoots and roots and Cd translocation were also determined. It was found that Cd tolerance and accumulation of these wheat varieties varied over the different decades. Principal components analysis (PCA) showed that wheat varieties in 1950s and 1980s were tolerant while varieties from the last decade were sensitive to Cd stress. Wheat varieties in 1960s and 1970s were particularly tolerant to Cd stress for the parameters of shoot height, secondary root numbers, net photosynthesis and transpiration rate while the varieties in the 1990s were sensitive to Cd stress for shoot dry weight and root dry weight. Comparing each decade to the average Cd translocation ratio from the roots to the shoots for the whole period, the varieties from the 1950s and 1960s had a higher translocation ratio, while varieties in the 1970s were below that average. Varieties from the 1980s to 2000s showed an average translocation ratio. Using cluster analysis (CA), Shannongfu 63, Yangmai 1 and Yangmai 158 were the most Cd-tolerant varieties in which Cd translocation ratio were low, and Yumai 18 and Huaimai 20 were the most Cd-sensitive varieties in which Cd translocation ratio were high. The results indicating that wheat varieties from different decades were different in Cd tolerance and accumulation, and could be useful for breeding wheat for Cd stress tolerance.
Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl₂ in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat seedlings were investigated. Gas exchange was monitored at 3, 9, 24 days after treatment (DAT). Growth parameters, chlorophyll content, leaf chlorophyll fluorescence, and Cd concentration in shoot and root were measured at 24 DAT. Seedling growth, gas exchange, chlorophyll content, chlorophyll fluorescence parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected Cd concentrations in shoots and roots could be explained by the regression model Y = K/(1 + exp(a + bX)). Jing 411 was found to be Cd tolerant considering parameters of chlorophyll content, photosynthesis and chlorophyll fluorescence in which less Cd translocation was from roots into shoots. The high Cd concentrations were in shoots and roots in Yangmai 10 which has been found to be a relative Cd tolerant cultivar in terms of most growth parameters.
Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch × Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd tolerance indexes (TI) were calculated for plants under Cd stress relative to control conditions. Cd concentrations in both root and shoot were determined and the amount of Cd accumulation and translocation calculated. The phenotypic variation of the above traits showed a continuous distribution pattern among the RILs. Twenty-six QTLs were detected, (16 of which were designated for the traits under the control and Cd stress, 8 for Cd tolerance and 2 for root Cd accumulation). These 26 QTLs individually could explain 7.97–60.16% of the phenotypic variation. Fourteen QTLs were positive (with the additive effects coming from Ch) while the remaining 12 QTLs were negative (with the additive effects contributed by Sh). No QTL were detected in the same region on the chromosomes of wheat. The results indicated that genetic mechanisms controlling the traits of Cd tolerance were independent from each other. Therefore, in this study, the properties of Cd tolerance and accumulation showed to be independent traits in wheat.
Determining the effect of water deficit during vegetative growth periods on grain yield will provide reasonable strategy for water-saving management of winter wheat (Triticum aestivum L.). Pot experiment was conducted using winter wheat cultivar (Yangmai16) to investigate the effects of water deficit during vegetative periods on post-anthesis photosynthetic capacity and the relationship with grain yield formation during the growing season of 2013–2014. Water deficit consisted of moderate (leaf water potential of -1.20 to -1.40 MPa) and severe (leaf water potential of -1.80 to -2.20 MPa) levels during tillering and jointing growth stages, respectively. Moderate water deficit during tillering significantly increased grain yield through an enhanced yield capacity per stem and moderate water deficit during jointing resulted in similar grain yields as compared to control, while severe water deficit during both periods significantly reduced grain yield due to strong reduction in number of spikes as compared to control. Moderate or severe water deficit during tillering had no effect on flag leaf area but reduced it significantly when it occurred during jointing. Water deficit treatments during jointing and tillering increased net photosynthetic rate (Pn) of flag leaves, the treatment during jointing being the most stimulatory. The maximum photochemical efficiency of Photosystem II, actual photochemical efficiency, the maximum carboxylation rate and photosynthetic electron transport rate increased in ways similar to Pn in response to water deficit but non-photochemical quenching decreased. We conclude that improved photosynthetic capacity by moderate water deficit during vegetative growth period highly contributes to grain yield, especially during tillering period, while grain yield decreased by the limitation of leaf area and spikes under severe water deficit.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.