Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Numerous isolated teeth, fin spine fragments and dermal denticles of a hybodont shark from a lacustrine limestone horizon at the top of lithofacies B of the Late Carboniferous to Early Permian succession of the Guardia Pisano Basin (Sulcis area, southwestern Sardinia, Italy) are assigned to a new species of the genus Lissodus Brough, 1935. Lissodus sardiniensis sp. nov. is erected on the basis of about 500 teeth, which show a unique feature of only one pair of lateral cusps that are bent in the direction of the prominent central cusp. Weak heterodonty allows distinction of symphyseal, mesial to anterolateral, and lateral teeth. Lissodus sardiniensis sp. nov. was a freshwater−adapted durophagous shark of bottom dwelling habit, an interpretation supported by general construction of the dentition and the morphology of the dermal denticles. The association with Acanthodes, diplodoselachid sharks and branchiosaurs allows the reconstruction of a five−level trophic chain for the Guardia Pisano Basin. The discovery of Lissodusin Sardinia is presently the southernmost known occurrence of that genus in the Late Palaeozoic of Europe. This new find adds significantly to knowledge of migration routes of aquatic organisms, especially freshwater sharks, between the single European basins in the Late Pennsylvanian, and changes in palaeobiogeography during the Early Permian.
Adsorption of biomolecules on surfaces is a perennial and general challenge relevant to many fields in biotechnology. A change of the Helmholtz free energy ΔA takes place when a molecule becomes adsorbed out of a bulk solution. The purpose of our investigations is to explore routes for the calculation of ΔA by molecular simulations. ΔA can be obtained both by integration over the mean force on a molecule and via the local density. It turns out that the route via the potential of mean force prevails over the latter due to better consistency. In this work we present results for systems of 1-centre and 2-centre Lennard-Jones mixtures at a 9/3 Lennard-Jones wall.
Common aims of habitat studies are to differentiate between (i) suitable and unsuitable sites for a given species, and (ii) sites used by different communities of species. To quantify differences between sites, field data of site use must be precise enough that true underlying between-site variability is not masked by within-site measurement error. We designed a pilot study to guide the development of a survey protocol for a habitat study on bats in an agricultural landscape in southeastern Australia. Three woodland sites and two scattered tree sites of 2 ha each were surveyed for nine consecutive nights. At three locations within each site (spaced > 50 m apart) one or two Anabat detectors were mounted 1 m above ground or in a tree (2 m above ground). We used mixed regression models to quantify multiple sources of variability in bat calling activity, and graphical data analysis to visualise how increases in survey effort were likely to affect inference. For the five most active species, we found that typically over 40% of variability in nightly detections occurred at the between-site level; approximately 10% occurred between locations within sites; approximately 20% was explained by night-to-night differences; and approximately 30% of variability was not attributable to systematic variation within experimental units. Differences in community composition between sites were clearly evident when two or more detectors per site were used for four or more nights. We conclude with six general considerations for the design of effective habitat studies. These are to (i) consider key contrasts of interest; (ii) use data from mild, calm, dry nights only; (iii) calibrate detectors; (iv) use multiple detectors where possible, or move a single detector within a site; (v) survey for multiple nights; and (vi) where vertical differentiation in habitat use is likely, mount detectors at different heights. These considerations need to be balanced within the context of financial and logistical constraints.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.