Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 Biofilms are complex bacterial communities that resist the action of antibiotics and the human immune system. Bacteria within biofilms are the cause of numerous, almost impossible to eradicate, persistent infections. Biofilms can form on many medical devices and implants, and so have an enormous impact on medicine. Due to the lack of effective anti-biofilm antibiotics, novel alternative compounds or strategies are urgently required. This review describes some of the latest approaches in the field of biofilm treatment. New anti-biofilm technologies target different stages in the biofilm formation process. Some act to modify the colonized biomaterials to make them resistant to biofilm formation. One potentially important candidate treatment uses silver nanoparticles that show anti-bacterial and anti-biofilm activity. The biological action of nano-silver is complex and seems to involve a number of pathways. However, there have been few reports on the anti-biofilm activity of silver nanoparticles and the precise mechanism underlying their action remains unresolved. Here, we describe some anti-biofilm approaches employing AgNPs and consider the challenges and problems that need to be addressed in order to make silver nanoparticles a part of an effective anti-biofilm strategy.
DnaJ chaperone, a member of the so called DnaK-DnaJ-GrpE chaperone machine plays an important role in cell physiology. The ability of Escherichia coli ∆dnaJ mutant to form biofilm was studied. It was shown that this mutant is impaired in biofilm development when exposed to 42°C for 2 h. The impairment in biofilm development was observed when the heat shock was applied either at the onset of biofilm formation or 2 h later. The biofilm formed was thinner and its structure was changed as compared to wild-type strain. This defect could be complemented by the introduction of a wild-type gene on a low-copy plasmid.
Listeria monocytogenes is Gram-positive bacterial pathogen, a causative agent of food poisoning and systemic disease – listeriosis. This species is still susceptible to several conventionally used antibiotics but an increase in its resistance has been reported. For this reason the search for new, alternative therapies is an urgent task. Silver nanoparticles seem to be the promising antibacterial agent. Minimal inhibitory concentration of silver nanoparticles was determined. Sublethal concentrations were used in study of nanosilver effect on cells lysis by estimation of the number of cells surviving the treatment with 0.25 or 0.5 of minimal inhibitory concentrations of silver nanoparticles. Autolysis of isolated peptidoglycan was studied by measuring the absorbance of preparation subjected to nanosilver treatment. Silver nanoparticles effect on L. monocytogenes envelopes permeability was determined by measuring the efflux of cF, DNA and proteins. It was demonstrated that nanosilver enhanced the lysis of L. monocytogenes cells and, to the lesser extent, autolysis of isolated peptidoglycan. The increase in the efflux of carboxyfluoresceine, DNA and proteins was also noted. The obtained results allow to postulate that L. monocytogenes peptidoglycan, constituting the main component of cell wall, is the target of silver nanoparticles activity against this pathogen.
Bacterial endospores are complex structures residing inside endospore-forming, mainly gram-positive bacteria. The process of sporulation is considered a simple example of cell differentiation. Endospores enable the organism to resist environmental stresses. Sporulation can be divided into several stages, from axial DNA filamentation to mother cell lysis. The structure and formation of an endospore is an attractive model for the assembly of complex macromolecular structures during development. The expression of genes involved in spomlation is compartmentalized and different sets of genes are expressed in the prespore and mother cell, this being associated with the subsequent activation of four sporulation-specific o factors. Their synthesis and activity are tightly regulated and the regulatory mechanisms have overlapping roles.
Oleanolic acid and ursolic acid are pentacyclic triterpenoids isolated from a variety of medicinal plants, which have antibacterial activity. Listeria monocytogenes is a Gram-positive facultative pathogen, being the causative agent of listeriosis. The present study was carried out to evaluate the in vitro effect of sub-inhibitory concentrations of both triterpene acids on the pathogenicity determinants of L. monocytogenes: their hemolytic activity and biofilm forming ability. Oleanolic and ursolic acids inhibited listeriolysin O activity without influencing toxin secretion. Biofilm formation, and the viability of L. monocytogenes cells in biofilms was diminished by both compounds. Thus, both acids affected L. monocytogenes virulence. It was also demonstrated that oleanolic acid bound to the peptidoglycan of L. monocytogenes and this interaction was influenced by teichoic acids.
The growing bacterial resistance to antibiotics calls for the elaboration of new pathogens elimination strategies. Some of these methods are based on the conjugative transfer of recombinant plasmids able to eliminate pathogenic recipients by plasmid run-away replication or by killing activity of plasmid-encoded bacteriocins. Using live bacteria as donors of plasmid vectors carrying killing determinants requires meeting many safety restrictions in order to eliminate potential biohazard.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.