Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 39

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Short-term (3 or 6 h) pre-treatment of apple (Malus domestica Borkh.) embryos with nitric oxide (NO) or hydrogen cyanide (HCN) induces transient accumulation of reactive oxygen species (ROS) leading to dormancy removal and germination. We demonstrated that enhanced NO emission by apple embryos during early phase of germination ‘‘sensu stricto’’ is required for seed transition from dormant into non-dormant state, and may be described by the model of ‘‘nitrosative door’’, analogous to ‘‘oxidative window’’. Cellular ROS concentration, resulting from NO or HCN embryo pre-treatment, seems to be under severe control of antioxidant system. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPX) and total peroxidases (Prxs) was determined during NO and HCNmediated germination ‘‘sensu stricto’’ of embryos. CAT and SOD activity increased transiently 24 h after embryos pre-treatment, while GR and Prx activity was stimulated mainly after 96 h. The most evident alterations were detected in GPX activity, being more than threefold stimulated by NO or HCN. Based on this results, we conclude that these reactive molecules act simultaneously crossing their signaling pathways and we propose that ROS, reactive nitrogen species, HCN at accurate level are essential during seed germination as signaling factors.
Allelopathy is defined as mechanism of plant-plant, plant-microorganisms, plant-virus, plant-insect, and plant-soil-plant interactions mediated by plant- or microorganism-produced chemicals released to the environment. The majority of allelochemicals are secondary metabolites and among others belong to terpenoids, phenolic compounds, organic cyanides and longchain fatty acids. The action of allelochemicals in target plant is diverse and affects a large number of biochemical reactions resulting in modifications of different physiological functions. Thus the results of allelochemical action can be detected at different levels of plant organization: molecular, structural, biochemical, physiological and ecological. Enzyme activities, cell division and ultrastructure, membrane permeability, ion uptake and as a consequence plant growth and development are modified by allelochemicals. Significant effects on photosynthesis and respiration are the best-characterized results of allelopathic interactions. Moreover allelopathic compounds seem to induce a secondary oxidative stress expressed as enhanced free radical production and induction of cellular antioxidant system. Plant survival under allelopathy stress conditions depends on plant defense leading to allelochemical detoxication, the process which may go on in parallel to cell defense reaction to oxidative stress. The article presents some aspects of the current knowledge regarding mechanisms of the allelopathy phenomenon. The allelopathy is a complex problem, thus comprehensive understanding of allelochemical mode of action requires further investigation and still remains an open question.
Nitric oxide (NO) and cyanide (HCN) are small gaseous molecules that have been intensively studied to explain their role in plant development, metabolism and reaction to stresses. Cyanide and NO are known to be produced endogenously during early phase of seed germination or are present in the environment. Both molecules regulate breakage of seed dormancy and accelerate seed germination. Regulatory role of cyanide in breaking of dormancy seems to be understood to some extend, while the NO mode of action is much less explained. However, some similarities could be suggested. The mechanisms involved in HCN-dependent dormancy breakage in apple embryos are summarized in relation to NO-donor mediated stimulation of germination.
We examined the response of plants of various crop and weed species to cyanamide in order to evaluate allelochemical- mediated interactions between the species. We studied germination and seedling growth in the common weeds Galium aparine L. and Amaranthus retroflexus L., and the crops Zea mays L., Triticum aestivum L., Lactuca sativa L., Solanum lycopersicum L. and Sinapis alba L. as acceptor plants. Concentration-dependent phytotoxic effects of cyanamide were noted during seed germination and in the root and shoot growth of the tested plants. The monocotyledonous plants generally were less sensitive to cyanamide treatment. Seed germination and seedling growth of the dicotyledonous plants were strongly inhibited by the allelochemical at both tested concentrations (1.2 mM, 3 mM). We conclude that cyanamide has potential for use as a natural herbicide only in specific field systems of cyanamide-tolerant monocotyledonous crops accompanied by cyanamide-sensitive dicotyledonous weeds.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.