Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The Swc4p protein, encoded by an essential gene, is shared by two chromatin-remodeling complexes in Saccharomyces cerevisiae cells: NuA4 (nucleosome acetyltransferase of H4) and SWR1. The SWR1 complex catalyzes ATP-dependent exchange of the nucleosomal histone H2A for H2AZ (Htz1p). The activity of NuA4 is responsible mainly for the acetylation of the H4 histone but also for the acetylation of H2A and H2AZ. In this work we investigated the role of the Swc4p protein. Using random mutagenesis we isolated a collection of swc4mutants and showed that the essential function of Swc4p resides in its N-terminal part, within the first 269 amino acids of the 476-amino acid-long protein. We also demonstrated that Swc4p is able to accommodate numerous mutations without losing its functionality under standard growth conditions. However, when swc4mutants were exposed to methyl methanesulfonate (MMS), hydroxyurea or benomyl, severe growth deficiencies appeared, pointing to an involvement of Swc4p in many chromatin-based processes. The mutants’ phenotypes did not result from an impairment of histone acetylation, as in the mutant which bears the shortest isolated variant of truncated Swc4p, the level of overall H4 acetylation was unchanged.
A system for the positive selection of transational initiation suppressors in S. cerevisiae has been developed. A mutant with an ATA initiation codon in the HEM12 gene, encoding uroporphyrinogen decarboxylase, was used to select cis- and trans-acting suppressors. These suppressors partially restore growth on nonfermentable carbon sources, such as glycerol, but still allow the accumulation of porphyrins. All extragenic suppressors are mapped to the SUI1 locus, encoding initiation factor eIF1. The effect of the hem12 mutation is also partially reversed by the known SUI3 suppressor encoding the beta subunit of eIF2. In contrast, the sui2 suppressor encoding the alpha subunit of eIF2 does not affect the hem 12 phenotype. The intragenic suppressors are able to restore the translation of hem12 due to the generation of additional, in frame AUG codons upstream of the hem12-14 mutation. Mutational analysis of the HEM12 leader sequence was also performed to determine the role of small open reading frames (uORFs) present upstream of the HEM12 ORF. Studies on the expression of integrated hem12-1/4-lacZ fusion, devoid of all upstream ATGs, indicate a lack of regulatory effect of uORFs on HEM12 translation.
The evolutionarily conserved proteins forming sister chromatid cohesion complex are also involved in the regulation of gene transcription. The participation of SA2p (mammalian ortholog of yeast Irr1p, associated with the core of the complex) in the regulation of transcription is already described. Here we analyzed microarray profiles of gene expression of a Saccharomyces cerevisiae irr1-1/IRR1 heterozygous diploid strain. We report that expression of 33 genes is affected by the presence of the mutated Irr1-1p and identify those genes. This supports the suggested role of Irr1p in the regulation of transcription. We also indicate that Irr1p may interact with elements of transcriptional coactivator Mediator.
In order to understand better the role of the human Tip60 complex component Gas41, we analysed its expression levels in brain tumours and searched for possible interactors. Two-hybrid screening of a human foetal brain library allowed identification of some molecular interactors of Gas41. Among them we found n-Myc transcription factor. The interaction between Gas41 and n-Myc was validated by pull-down experiments. We showed that Gas41 is able to bind both n-Myc and c-Myc proteins, and that the levels of expression of Gas41 and Myc proteins were similar to each other in such brain tumors as neuroblastomas and glioblastomas. Finally, in order to identify which region of Gas41 is involved in the interaction with Myc proteins, we analysed the ability of Gas41 to substitute for its orthologue Yaf9 in yeast; we showed that the N-terminal portions of the two proteins, containing the YEATS domains, are interchangeable, while the C-terminal portions are species-specific. In fact we found that Gas41 C-terminal portion is required for Myc protein interaction in human.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.