Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 23

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The remediation of heavy metal-contaminated sites using plants is a promising alternative to current methodologies. In this study, small-scale wetlands were constructed to search for new plant species that are suitable and hold potential for phytoremediation of heavy metalcontaminated wastewater originating from an electroplating plant. Ten macrophyte species [Phragmites australis (Cav.) Trin., Typha orientalis Presl, Lythrum salicaria Linn., Arundo donax Linn. var. versicolor Stokes, Typha minima Funk, Juncus effusus L., Pontederia cordata L., Cyperus alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth., Acorus calamus Linn., and Iris pseudacorus Linn.] were investigated and compared for their shapes, biomass, roots, and ability to accumulate heavy metals. Acorus calamus Linn., T. orientalis Presl, P. australis (Cav.) Trin., T. minima Funk, and L. salicaria Linn. exhibited the highest levels of metal tolerance, whereas P. cordata L., I. pseudacorus Linn., and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth. had the lowest. Some plants accumulated higher concentrations of metals in the tissues compared with other species such as T. minima Funk, P. australis (Cav.) Trin., L. salicaria Linn., A. donax Linn. var. versicolor Stokes, P. cordata L., and A. calamus Linn., whereas T. orientalis Presl and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth. had poor capacity to accumulate heavy metals. The results showed that, of the 10 species, P. australis (Cav.) Trin., A. calamus Linn., T. minima Funk, and L. salicaria Linn. are the most suitable and promising plant materials for phytoremediation of heavy metal-contaminated wastewater.
Hydrogen peroxide (H₂O₂), a second messenger, plays a vital role in seed germination and plant growth, development as well as the acquisition of stress tolerance, while hydrogen sulfide (H₂S) is considered as a new emerging cell signal molecule in higher plants. In the present study, soaking of H₂O₂ greatly improved germination percentage of Jatropha curcas seeds, stimulated the increase of L-cysteine desulfhydrase activity, which in turn induced accumulation of H₂S. On the contrary, pretreatment of aminooxyacetic acid (AOA), inhibitor of H₂S biosynthesis, eliminated H₂O₂ stimulated the increase of activity of L-cysteine desulfhydrase and accumulation of H₂S as well as improvement of germination percentage. In addition, exogenously applied H₂S also could improve germination percentage of seeds of J. curcas. These results suggested that pretreatment of H₂O₂ could improve germination percentage of J. curcas seeds and this improvement was mediated by H₂S.
In this study, we observed that transgenic plants overexpressing NHX1 from different organisms grew well in the presence of 200 mM NaCl and also under water deprivation, while the wild-type plants exhibited chlorosis and growth inhibition. The photosynthesis activity of five kinds of transgenic plants was higher than the wild-type plants. The leaf water potential was less negative for wild-type than for transgenic plants. Moreover, these transgenic plants accumulated more Na⁺ and K⁺ in their leaf tissue than the wild-type plants. The toxic effects of Na⁺ accumulation in the cytosol are reduced by its sequestration into the vacuole. In addition, the thermal dissipation and ROS scavenging components increased in all transgenic Arabidopsis plants compared with that in non-transgenics. The salt tolerance of transgenic plants was passed on to the offsprings to the T₅ generation. Furthermore, it should be noted that in transgenic Arabidopsis plants, overexpression of NHX1s from dicots showed higher salt and drought tolerance than that from wheat.
Background: Platelet derived growth factors (PDGFs) are key components of autocrine and paracrine signalling, both of which play important roles in mammalian developmental processes. PDGF expression levels also relate to oxygen levels. The characteristics of yak PDGFs, which are indigenous to hypoxic environments, have not been clearly described until the current study. Materials and methods: We amplified the open reading frame encoding yak (Bos grunniens) platelet derived growth factor-alpha (PDGFA) from a yak skin tissue cDNA library by reverse transcriptase polymerase chain reaction (PCR) using specific primers and Sanger dideoxy sequencing. Expression of PDGFA mRNA in different portions of yak brain tissue (cerebrum, cerebellum, hippocampus, and spinal cord) was detected by quantitative real-time PCR (qRT-PCR). PDGFA protein expression levels and its location in different portions of the yak brain were evaluated by western blot and immunohistochemistry. Results: We obtained a yak PDGFA 755 bp cDNA gene fragment containing a 636 bp open reading frame, encoding 211 amino acids (GenBank: KU851801). Phylogenetic analysis shows yak PDGFA to be well conserved, having 98.1% DNA sequence identity to homologous Bubalus bubalus and Bos taurus PDGFA genes. However, 8 nucleotides in the yak DNA sequence and 4 amino acids in the yak protein sequence differ from the other two species. PDGFA is widely expressed in yak brain tissue, and furthermore, PDGFA expression in the cerebrum and cerebellum are higher than in the hippocampus and spinal cord (p > 0.05). PDGFA was observed by immunohistochemistry in glial cells of the cerebrum, cerebellum, and hippocampus, as well as in pyramidal cells of the cerebrum, and Purkinje cell bodies of the hippocampus, but not in glial cells of the spinal cord. Conclusions: The PDGFA gene is well conserved in the animal kingdom; however, the yak PDGFA gene has unique characteristics and brain expression patterns specific to this high elevation species. (Folia Morphol 2017; 76, 4: 551–557)
Background: Kidney has long been thought to be a body’s largest organ of elimination for maintaining acid-base balance. In recent years, the research on kidneys has mainly focused on the structural characteristics of the kidney of single age group animals. In this paper we used histological and immunohistochemical methods to observe and compare the structure characteristics of yak kidney and the expression of epidermal growth factor receptor (EGFR), bone morphogenetic protein-2 (BMP-2) and p53 in the kidney of yaks of three different age groups. The aim of the study was to investigate histological characteristics of age-related changes in the kidney of yak and expression and localisation of kidney-related factors. Materials and methods: Fifteen healthy male and female yaks from highland plateaus (three groups: newborn, adult and old yaks, n = 5 per group). Histological methods were used to compare the relevant characteristics of the kidney of yaks. The immunohistochemistry method was used to observe the expression and localisation of EGFR, BMP-2, and p53 of the kidney of different ages, and the optical density value was measured and analysed by using image analysis software. Results: This is an overall observation of the kidney tissue section, which includes the surface of the renal capsule and the internal parenchyma. In the renal parenchyma, there are renal corpuscles, renal tubules. The internal substance included cortex and medulla, which were bounded by the arched artery. In the cortex, there were renal corpuscles, convoluted part of renal tubules (proximal convoluted tubule and distal convoluted tubule) and collecting tubules. The medulla included straight parts of renal tubules (proximal straight tubule and distal straight tubule), thin segments and collecting tubules. It was observed that the organisational structure of the kidney of yaks did not change with age, but the degree of development of the internal structure (glomeruli, renal tubules and collecting tubules) of the kidney changed with age. Immunohistochemical results demonstrated that EGFR and BMP-2-positive reaction in the newborn group was mainly distributed in the proximal tubule epithelial cells, and widely distributed in the adult and old groups. However, the p53-positive reaction was widely distributed in the newborn, adult and old groups. Conclusions: The results revealed that the kidney structure tended to be completed with age, and the function of the kidney gradually improved. EGFR and BMP-2 had the effect of promoting kidney development. However, p53 had been widely distributed in the newborn kidney of the yaks. It is suggested that p53 had been involved in cell migration and metabolic differentiation and self-renewal in the new stage. (Folia Morphol 2019; 78, 1: 114–123)
This study examined the effects of molybdenum (Mo) and boron (B) on the rhizosphere microorganisms and the soil enzyme activities of soybean. The soybeans were treated with seven different Mo and B supplements (control: without Mo and B) Mo1 (0.0185 g kg-1), B1 (0.08 g kg-1), Mo1 + B1 (0.0185 ? 0.08 g kg-1), Mo2 (0.185 g kg-1), B2 (0.3 g kg-1) and Mo2 ? B2 (0.185 + 0.3 g kg-1) throughout the plants’ four growth stages. The results showed that Mo, B, and combined Mo and B treatments increased the soil microbial populations, stimulated the rhizosphere metabolisms, and improved the soil enzyme activities. These stimulatory effects varied in intensity among the treatment groups. The Mo and B combination treatments were more beneficial for the soybean rhizosphere soil than that of Mo-only or the B-only treatments, which suggests that the two elements have complementary functions in the biological processes of the soybean rhizosphere.
The expression of predominant housekeeping genes used in RT-qPCR can vary during development and differentiation. The frequently used housekeeping genes (ACTB, GAPDH, 18S rRNA, EF1α and RPL 13a) were evaluated during an early stage of the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mMSCs) (under normal conditions or treated with CCG-4986) to identify housekeeping genes whose expression remained constant during osteogenic differentiation. When we used RGS4 mRNA, which was determined as copy number per μg of total RNA, to normalize gene expression, we observed that the relative EF1α expression profile was consistent with RGS4 expression after treatment with CCG-4986. All the relative expression profiles of the EF1α, 18S rRNA, and RPL13a housekeeping genes were consistent with RGS4 profiles determined by measuring mRNA copies under normal osteogenic differentiation conditions. The expression profiles calibrated by ACTB and GAPDH were not consistent with those determined using mRNA copy number in untreated cells or cells treated with CCG-4986 under osteogenic differentiation conditions. Under normal osteogenic differentiation conditions, EF1α, 18S rRNA, and RPL 13a are suitable housekeeping genes for RT-qPCR analysis. However, EF1α is the only suitable gene upon CCG-4986 treatment.
Root border cells (RBC) are cells surrounding the root apex. They are functionally different from the apex and are considered to play a role in the protection of the root tip from biotic and abiotic stresses. We investigated RBC viability, formation, and pectin methylesterase (PME) activity of the root caps during RBC development in cowpea (Vigna ungniculata ssp. sesquipedalis) under aeroponic culture. The results showed that the border cells formed almost synchronously with the emergence of the root tip. The number of border cells reached the maximum when roots were approximately 15 mm long. Pectin methylesterase (PME) activity of the root cap peaked at a root length of 1 mm. Root border cells separated from the root cap died within 24 h under Al³⁺ stress while those still attached to the root cap maintained 85% viability at 48 h after treatment. The PME activity did not differ significantly under different Al³⁺ treatments.
Two genotypes of rice (Oryza sativa L.), Azucena (iron tolerant) and IR64 (iron sensitive), were used to investigate the numbers and survival rates of root border cells (namely, in situ border cells) in plants that were exposed to excess iron (Fe²⁺). Additionally, we examined the changes in the root tip cell morphology and activities of protective enzymes in response to Fe²⁺ toxicity. The results showed that Fe²⁺ toxicity hindered the development of root border cells (RBCs) and that higher Fe²⁺ concentrations caused root cap cell walls to thicken. In the iron-sensitive rice variety, these changes lowered RBC survival rate and lead to programmed cell death. Low concentrations of Fe²⁺ were shown to facilitate the development of RBCs in the iron-tolerant rice variety and that the activities of the protective enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were elevated in the iron-tolerant variety, thus suggesting that rice root tips could defend against Fe²⁺ toxicity by producing RBCs, root cap cells, and protective enzymes.
 Objective. To explore the effect of dexamethasone (DEX) on monocyte adhesion function and its underlying mechanism. Methods. The effects of DEX and fasudil on adhesion of cultured U937 monocytes to human umbilical vein endothelial cells (HUVEC) following stimulation with phorbol myristate acetate (PMA) were studied; Changes in the Rho-associated coiled-coil protein kinase 1 (ROCK1) protein content and activity were evaluated. Results. DEX and fasudil significantly inhibited U937 cell adhesion rates under PMA stimulation and inhibited ROCK1 activity. Mifepristone (RU-486) and cycloheximide (CHX) did not alter these effects of DEX. Conclusions. DEX interferes with the adhesion function of U937 cells through the inhibition of ROCK1 activity.
Magnolia cylindrica Wils. is one of the third most-protected wild plants in China. To describe the size structure and dynamics of its population, field data were obtained from eight newly established sites, using a contiguous grid quadrate method in Jiulong Mountain of East China. The population size structure and spatial distribution pattern were discussed based on a theoretical distribution model and assembling intensity index. The population size structure showed a declining trend because of the lack of seedlings. The number of stump-sprouting, size class III (sapling trees) individuals was large enough to make up for the shortage of small seedlings and the complete regeneration of populations through sprouting. The distributions of M. cylindrica, both seedling populations (Group A) and overall populations (Group B), were mostly clumped. The spatial pattern intensities of the populations at different stages (mainly small trees, middle trees, and big trees) were higher for Group A than those for Group B. The two groups have the same tendency in that the pattern intensity declined from small trees to the larger ones. Group A and Group B differed in spatial pattern: small and middle trees were randomly distributed in seedling populations, but aggregated in overall populations. The populations of M. cylindrica (both group A and B) were characterized by the pattern scale between 16 to 32 m2, measured by Greig-Smith and Kershaw methods. These results suggest that sprouting should be seriously considered in population rehabilitation and forest tending management and the area of forest tending management should be close to the maximum intensity.
The macroscopic and microscopic morphologies and indigo and indirubin concen­tration of the traditional Chinese medicine herbs Isatis indigotica Fort., Polygonum tinctorium Ait., and Baphicacanthus cusia (Nees) Bremek, all commonly known as “daqingye”, were determined and compared. The morphological analyses indicated that I. indigotica has leaves with winged petioles and no glandular hairs or crystals, P. tinctorium has leaves with membranous ocrea and clusters of calcium oxalate, and B. cusia has palisade cells in the mesophyll running over the main vein and single cells containing calcium carbonate crystals. Indigo and indirubin are chemical constituents that have been previously isolated from daqingye and were selected in this study as identification markers for high-performance liquid chromatography analysis due to their pharmacological activities. The chromatographic results showed that indigo and indirubin concentration varied significantly among the three species: high concentration of both indigo and indirubin were observed in I. indigotica, the highest concentration among the three daqingye plants was found in P. tinctorium but with low levels of indirubin, and the concentration of indigo and indirubin was quite low in B. cusia. In summary, three different species commonly known as daqingye were accurately distinguished by morphological observation, internal leaf anatomy analysis, and chromatographic analysis.
 Glucocorticoid receptor (GR) is a steroid hormone receptor that has been shown to play important roles in diverse cellular and physiological processes. More and more evidence has revealed that the effects of glucocorticoids are mediated by the glucocorticoid receptor through genomic or nongenomic mechanisms. A growing number of glucocorticoid receptor splice variants have been identified in human tissues, but few are known in rat tissues. In this work, a novel rGR cDNA, called rGRβ, was cloned from Sprague Dawlay (SD) rat liver. Sequence analysis revealed that the rGRβ mRNA was 39 base pairs (bp) shorter than the rGR mRNA reported earlier. The deleted segment is located in exon 1 and encodes 13 repeated glutamine residues. Both the rGR and rGRβ mRNAs were quantitated by Northern blot hybridization using non-homologous glucocorticoid cDNA probes. Results showed that the rGR and rGRβ mRNAs were most abundant in the lung, the least abundant in the heart, and there were more rGR and rGRβ mRNAs in the kidney than in the liver. The identification of rGRβ may contribute to the understanding of the genomic or nongenomic effects of glucocorticoids.
Cold-inducible RNA binding protein (CIRP) is over-expressed during cold and many other stresses, and could regulate the adaptation to hypothermia. In the present investigation, the objective was to determine the expression of CIRP in adult yak heart, liver, spleen, lung, kidney, brain, ovary, testis and skin by relative quantitative real time polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry from mRNA and protein levels. The CIRP open reading frame encoding was cloned from the domestic yak brain. Results of RT-PCR and Western blot showed the high expression level of CIRP in the heart, kidney, brain, testis and skin, and the lower expression level of CIRP in the lung. Immunohistochemical staining showed CIRP was expressed in the nucleus of neuronal cells, spermatogonia, primary spermatocytes and epidermal cells, and in the cytoplasm of the residual tissues. These observations may provide new data to understand and further study the important role of CIRP protein in the plateau adaptation of the domestic yak on long-term evolution. (Folia Morphol 2016; 75, 4: 460–466)
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.