Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
INTRODUCTION: The role of primary sensory cortical areas in perception and behavior remains unclear. Moreover, the functional plasticity of these circuits during task acquisition is largely unknown. AIM(S): Here, we developed a visual learning task in awake, head-fixed mice in which animals learn to associate a small drifting grating stimulus with an aversive air puff to the cornea, driving the establishment of a conditioned blink response. METHOD(S): We previously showed that both task acquisition and performance require intact primary visual cortex (V1). Pairing this approach with 2‑photon calcium imaging of identified neuronal subpopulations in V1, we monitored cellular activity across two weeks of learning. RESULTS: Our results show that the population activity of excitatory neurons in both layer 2/3 and 5 reliably encodes the presence of a sensory stimulus throughout training, but acquires the ability to accurately represent motor output over several days. Analysis of individual neurons demonstrates that cells not encoding behavior significantly lose their visual responses during learning, producing an overall enhancement of the population-level representation. We find similar results for GABAergic interneurons expressing parvalbumin and vasoactive intestinal peptide. However, somatostatin‑expressing interneurons fail to encode behavior at any point in training, suggesting that cell type‑specific mechanisms promote plasticity in V1 circuits associated with learning. CONCLUSIONS: In conclusion, our data suggest that visual experience produces a functional reorganization of both excitatory and inhibitory networks that facilitates efficient performance in visuomotor behavior.
Mitochondrial cytochrome b gene sequences and morphological data (body length, hind foot length, etc.) for twelve populations with pairwise distances 27–600 km in Qinghai-Tibetan Plateau (distributed in Qinghai, Gansu and Sichuan Province, and at the altitude 3020–4550 m) in Western China were used to investigate the phylogeographical pattern of Plateau zokor (Myospalax baileyi Thomas). There was a little disparity between mtDNA genetic distance and morphological Euclidean distance on population relationships. However, there is a significant correlation (P <0.001) calculated by Mantel’s tests was validated between mtDNA and morphology distances. Analysis of Molecular Variance showed that most of the observed genetic variations occurred between populations, indicating little maternal gene flow between them, as a result of geographical restrictions. Phylogenetic analysis coupled with cluster analysis together showed that the substantial population structuring and phylogenetic discontinuities existed within this species. The evident allopatric population structuring of this subterranean rodent may mostly result from its specialized subterranean excavating behavior with high energy costs, predation from grassland raptors and also the influences of perennial tundra and environmental desiccation in the Qinghai-Tibetan Plateau.
Heat stress is a major environmental stress that limits plant growth and yield worldwide. The present study was carried out to explore the physiological mechanism of heat tolerant to provide the theoretical basis for heat-tolerant breeding. The changes of leaf morphology, anatomy, nitrogen assimilation, and carbohydrate metabolism in two wucai genotypes (WS-1, heat tolerant; WS-6, heat sensitive) grown under heat stress (40°C/30°C) for 7 days were investigated. Our results showed that heat stress hampered the plant growth and biomass accumulation in certain extent in WS-1 and WS-6. However, the inhibition extent of WS-1 was significantly smaller than WS-6. Thickness of leaf lamina, upper epidermis, and palisade mesophyll were increased by heat in WS-1, which might be contributed to the higher assimilation of photosynthates. During nitrogen assimilation, WS-1 possessed the higher nitrogen-related metabolic enzyme activities, including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH), which were reflected by higher photosynthetic nitrogen-use efficiency (PNUE) with respect to WS-6. The total amino acids level had no influence in WS-1, whereas it was reduced in WS-6 by heat. And the proline contents of both wucai genotypes were all increased to respond the heat stress. Additionally, among all treatments, the total soluble sugar content of WS-1 by heat got the highest level, including higher contents of sucrose, fructose, and starch than those of WS-6. Moreover, the metabolism efficiency of sucrose to starch in WS-1 was greater than WS-6 under heat stress, proved by higher activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy), acid invertase (AI), and amylase. These results demonstrated that leaf anatomical alterations resulted in higher nitrogen and carbon assimilation in heat-tolerant genotype WS-1, which exhibited a greater performance to resist heat stress.
Herein, we cloned a full-length cDNA encoding allene oxide cyclase (AOC, EC 5.3.99.6) that is a key enzyme in jasmonates (JAs) biosynthetic pathway from Jatropha curcas L., an important plant species as its seed is the raw material for biodiesels, named as JcAOC (GenBank accession no. FJ874630). The cDNA was 924 bp in length with a complete open reading frame of 750 bp, which encoded a polypeptide of 250 amino acids including a putative signal peptide of 65 amino acid residues and a mature protein of 185 amino acids with a predicted molecular mass of 20.7 kDa and a isoelectric point of 6.24. Phylogenetic analysis indicated that JcAOC belonged to the AOC superfamily. Semi-quantitative RT-PCR analysis revealed that JcAOC mRNA was expressed in roots, stems, leaves, young seeds, endosperms, and flowers, but that the expression level was highest in leaves and lowest in seeds, and mRNA expression of JcAOC could be induced by salt stress (300 mM NaCl) and low temperature (4℃). Furthermore, the full-length coding region of JcAOC excluding signal peptide sequence was inserted into pET-30a and was successfully expressed in Escherichia coli. Overexpression of JcAOC in E. coli conferred its resistance to salt stress and low temperature.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.