Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
How three different irrigation regimes, conventional irrigation (CI), partial root drying (PRD), and deficit irrigation (DI), on endogenous hormonal abscisic acid (ABA) and zeatin-riboside (ZR) changes, stomatal conductance (gs), reactive oxygen species (ROS), antioxidant enzyme activities, and metabolism of non-enzymatic compounds was assessed. This investigation revealed that the root-sourced chemical signals induced by PRD irrigation reduced the gs without any altered relative water content (RWC) in leaves, and further analysis found that stress-triggered ABA could induce stomatal closure; however, ZR exhibited antagonistic effects on the accumulation and stomatal regulation of ABA. Thus, in the current study, gs was more responsive to the combined ABA/ZR signal than ABA signal solely. Both PRD and DI treatments increased the production rate of superoxide anion (O₂˙⁻) as well as hydrogen peroxide (H₂O₂) concentration in root and leaf tissues under stress conditions; however, the superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities significantly increased under PRD irrigation. Moreover, compared with DI regime, PRD irrigation caused less proline and malondialdehyde (MDA) accumulation in stressed root and leaf tissues, suggesting that PRD irrigation technique alleviated the stress-induced physiological damage. Consequently, compared to CI, the leaf area and whole-plant dry weight in maize were unchanged under PRD irrigation but reduced significantly under DI treatment.
To understand the physiological response under salt stress, photosynthesis, PSII efficiency, contents of ions and free amino acids in leaves of Caragana korshinskii Kom (Caragana) exposed to three levels of salinity were investigated. Results showed that the decrease in photosynthesis of Caragana with salt stress was largely dependent on stomatal closure during the experimental period. In the early period of stress, due to the dissipation of excess excitation energy which occurred by the increase in nonphotochemical quenching, photodamage was avoided and maximum efficiency of PSII was not affected. However, with increased salt stress, the photoprotective mechanism was not sufficient to avoid oxidative damage. Thus, damage to PSII and its resulting non-stomatal inhibition of photosynthesis may occur. At 18 days with 300 mM NaCl treatment, a non-stomatal factor was responsible for the inhibition of photosynthesis. Accumulation of Na⁺ and K⁺ in leaves indicated no competition between Na⁺ and K⁺ absorption, which suggests the potential for a unique pathway of Na⁺ absorption in Caragana. There was a critical salinity level for the accumulation of free amino acids in salt-treated leaves of Caragana, i.e., free amino acids accumulated slowly below critical level, but rapidly above the critical level. In addition, proline was the most abundant among all individual free amino acids.
Since a decade, the large-scale commercial production of Siratia grosvenorii plantlets is being practiced through in vitro culture of its microcuttings, but it has some drawbacks such as handling of plantlets, low transplant-survival rate, development of massive callus, low yield after transplantation, etc. An experiment has been conducted to improve the prevailing technique as well as to develop a new ex vitro technique to overcome these drawbacks. Several concentrations of naphthalene acetic acid (NAA) (0–4.0 mg/l) have been tried with the MS (Murashige and Skoog in Physiol Plant 15:473–479, 1962) basal medium containing 3% (w/v) sucrose and 4.0 g/l agar, out of which 0.1 mg/l NAA was found best in terms of smaller diameter of callus and maximum rooting and transplant survival rate. Further, use of perlite instead of agar medium also showed possibilities for future research on commercial-scale plantlet production. Ex vitro rooting technique was found superior to the in vitro one as plantlets developed through this method had lateral roots without any callus at the base of microcuttings, just like the natural root system and of course with higher root length, rooting rates, and transplant survival rate compared to the in vitro developed plantlets. Further, this technique is economical in terms of labor and time saving and gives rise to vigorous plants which ultimately bring higher yields and profits.
Maize is a crop that is moderately sensitive to salt stress. Salinization of soil is a severe threat to maize production worldwide. Understanding the response and tolerance mechanism of maize to salt stress may be conducive to formulate strategies to improve maize performance under saline environments. In this study, salt-tolerant, salt-sensitive and moderate salt-tolerant maize plants were investigated, respectively, under salt stress conditions in three aspects: growth status, enzyme activity and gene expression level. After 30 days of planting and salt stress treatment, the plant height of USTB-297 (salt-tolerant maize) was 49.40% higher than that of USTB-265 (salt-sensitive maize) and 25.10% higher than that of USTB-109 (moderate salt-tolerant maize). Analysis of antioxidant enzymes superoxide dismutase (EC1.15.1.1), ascorbate peroxidase (EC1.11.1.11) and catalase (EC1.11.1.6) revealed that there are distinctions between these different breeds. Salt-tolerant breed with a higher plant height also had higher antioxidant enzyme activity and related genes expression compared to salt-sensitive or moderate salt-tolerant breed. The detection of gene expression in superoxide dismutase, catalase and ascorbate peroxidase using real-time PCR and the data of enzyme activity indicate that we can build a method of breeding for maize.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.