Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Genus Lithoaphis Takahashi, 1959 is reported from China. One new species Lithoaphis quercisucta sp. nov. from Yunnan Province, China is described. Diagnosis character, key of species, distribution, host plant and biology of the genus Lithoaphis are provided. Morphological description, feature pictures, distribution, and host plant of the new species are included in this paper. All specimens including the type are deposited in the Zoological Museum, Institute of Zoology, Chinese Academy of Sciences, P. R. China.
The karst habitats of southwestern China are characterized by a highly heterogeneous distribution of water resources. We hypothesized that the clonal integration between connected ramets of the clonal vine Ficus tikoua was an important adaptive strategy to the patchy distribution of water resources in these habitats. We grew ramet pairs (each consisting of a parent and an offspring ramet) in both homogeneously and heterogeneously watered conditions. The offspring ramets were wellwatered, whereas their connected parent ramets were randomly assigned to four water treatments: well-watered, mild water stress, moderate water stress, and severe water stress. Increasing water stress decreased leaf water potential, relative water content, net assimilation rate, maximum quantum yield of PSII (Fv/Fm), and biomass of the parent ramets. Subjecting the parents to water stress significantly increased root biomass and root mass ratio (RMR) of their offspring ramets. Exploitation of plentiful water resources through the increased adventitious roots connected to another soil patch permitted the complete restoration of water relations and photosynthetic capacity of offspring ramets after an initial depression. Water relations and gas exchange of the parents were not affected by the water supply to their connected offspring ramets, suggesting that offspring ramets hardly exported water to the stressed parents. However, net assimilation rate and proline content of the offspring ramets increased when they were connected to water-stressed parents. The compensatory photosynthetic responses of offspring ramets connected to stressed parents revealed an increasing trend as the experiment progressed. Morphological and physiological plasticity of F. tikoua in response to heterogeneous water resources allow them to adapt to karst habitats and be suitable candidates for vegetation restoration projects.
Seed plant diversity is under threat due to human over-exploitation and changes in land use. There is a need to identify regions where seed plant diversity is most at risk and establish nature reserves to protect the most important species. This study collected province scale seed plant richness data and corresponding environmental, social and, economic data in China in order to assess the impact of environmental and socio-economic factors on seed plant diversity and to quantify the relative importance of climate, human disturbance, and habitat heterogeneity on the distribution of seed plant diversity. A downscaling model was established to map the spatial distribution of seed plant diversity at a 1-km resolution. The results showed that temperature and precipitation seasonality, potential evapotranspiration, humidity index, altitude range, and gross domestic product were important determinants of seed plant diversity. The relative contribution of temperature seasonality was the most important factor (explaining 29.9–36.2% of the variation). Climate, human disturbance, and habitat heterogeneity explained much of the seed plant richness and density variation (about 69.4–71.9%). A scale-down model explained 72% of seed plant richness variation and showed that the center of seed plant species diversity was mainly located in the southeast area of China in the Qing-Tibet Plateau, Yun-Gui Plateau, Hengduan Mountain region, middle of the Sichuan Basins, Taiwan island, and Hainan island. This study improves our understanding of biodiversity hotspot regions and is a useful tool for biodiversity conservation policy and nature reserve management in China.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.