Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Przeprowadzone badania dotyczyły zmian w syntezie DNA, RNA i białek w komórkach jelita cienkiego myszy w warunkach długotrwałej, trzymiesięcznej intoksykacji kadmem i selenem oraz ustalenia, czy selen modyfikuje zmiany wywołane działaniem kadmu.
The aims of this study were to evaluate the influence of an extremely low-frequency electromagnetic field (ELF-EMF) on [³H]glucose uptake in the peripheral tissues and organs of rats. Rats were exposed to EL F-EM F (frequency-10 Hz, induction -1.8-3.8 mT) one hour daily for 14 consecutive days. Control animals were sham exposed. On the 15th day (24 hours after last exposure) rats were injected with D-[³H]-6-glucose 500μCi/kg IP. Fifteen minutes later animals were sacrificed by decapitation and peripheral tissues were excised and examined for radioactivity (desintegrations per minute, DPM/100 mg wet tissue weight), which expressed [³H]glucose uptake. In most of the examined tissues and organs, such as liver, kidney, heart muscle, cartilage, connective tissue, tendon and skin, [³H]glucose uptake in EL F-EM F-exposed animals was significantly higher as compared to that in the sham control. Exposure to EL F-EM F did not influence [³H]glucose uptake in the thoracic aorta and the skeletal muscle. It is concluded that ELF-EMF impacts tissue glucose uptake by facilitating glucose transport via cell membranes, dependent and probably also independent of its role in increasing insulin action in insulin-dependent tissues.
Organic mercury (CH3HgCl) with metal concentration 5 ppm in tap water was applied to rats suckling their newborn for the first 21 days of life. A second group of young rats took the mercury in their tap water 5 ppm from the 22nd to the 43rd day of postnatal life. Control rats drank tap water only. In 2-month-old male rats the following behavioral study was performed after saline or specific central dopamine receptor agonists and agonists apply (quinpirole, SKF-38393, haloperidol, SCH-23390): irritability, yawning behavior, oral activity, locomotion, exploratory activity, and catalepsy. In the striatum and frontal cortex of three examined groups the biogenic amines levels (DA, DOPAC, HVA, 3-MT, 5-HT, 5-HIAA, NA) were estimated by means of HPLC/ED technique, and DA and 5-HT turnover. The effect of quinpirole (a central dopamine D2 receptor agonists) was also examined on (3H)glucose uptake in discrete parts of the brain. It was shown that mercury affected behavioral changes after dopaminergic agents apply to adult animals when exposed in the period from the 22nd to 43rd day of postnatal development. Biochemical changes (biogenic amines level, turnover and (3H)glucose uptake) were more pronounced in adult animals exposed to mercury via mother's milk (1st to 21st day of life). In light of the above we conclude that early postnatal exposure of rats to organic mercury modulates activity of the central dopamine neurotransmitter system.
To determine the susceptibility of developing brain and other tissues to accumulate zinc, rats were exposed to zinc at different periods of ontogeny. For the prenatal group, pregnant Wistar rats received 50 ppm of zinc (ZnSO₄ · 7H₂O) in drinking for the entire duration of pregnancy. On the day of delivery zinc was removed from the drinking water. Another group, dams, received 50 ppm of zinc in drinking water only during the suckling period (from delivery until the 21st day of postnatal life). Their offspring were weaned on the 21st day, at which time zinc was removed from the drinking water. The control group drank tap water only. At 3 weeks after birth, the level of zinc was estimated in the brain, liver, mandibular bone and kidney of offspring from all groups. At 8 weeks after birth 6-[³H]D-glucose (500 µCi/kg) was administered IP to male offspring, 15 minutes before sacrifice. By liquid scintillation spectroscopy, ³H-activity (expressed as disintegrations per minute [DPM]) was determined in discrete parts of the brain and some peripheral tissues, and expressed as DPM/100 mg of tissue, wet weight. It was found that the highest amount of zinc was accumulated in the brain and liver of rat offspring that were exposed to zinc postnatally. [³H]-activity was at lower levels, in comparison, in nearly all other parts of the brain of rats exposed to zinc postnatally. In offspring receiving zinc prenatally, zinc levels were at similar or lower amounts in the brain and peripheral tissues, vs. the group with postnatal exposure. From this study in rats we conclude that zinc accumulates to the highest extent in brain, following a later ontogenetic (postnatal) exposure period, and by this, there is also greater disturbance of metabolic processes associated with glucose utilization.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.