Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.
The micromorphological typology of seed surfaces was investigated in rapid-cycling Brassica (RCBr) forms, using scanning electron microscopy. Four types of basic ornamentation pattern were recognized: reticulate (B. rapa, B. juncea), reticulate-foveolate (B. nigra), randomly reticulate (B. oleracea, B. napus) and reticulate-rugose (B. carinata). The seed coats showed variation in the shape and size of the testa epidermal cells and the structure of the outer periclinal and anticlinal cell walls. The surface patterns in RCBr seeds were less exposed and were moderately reticulated compared to cultivated Brassica species. The micromorphological characteristics of the seed coats may provide valuable additional diagnostic criteria for delimitation of RCBr forms, and can be used in identification of seeds.
Fluorescence and genomic in situ hybridization (FISH and GISH) methods were used for discrimination of Brassica genomes. The three diploid and three allotetraploid species of Brassica, known as the "U-triangle," represent an attractive model for molecular and cytologieal analysis of genome changes during phylogeny in the genus Brassica. The use of genomic DNA probes enabled unambiguous discrimination of the ancestral genomes in B. juncea and B. carinata, and was only partially successful in B. napus. GISH signals in all genomes were localized predominantly in pericentromeric regions of chromosomes. Simultaneous application of genomic and ribosomal DNA probes in multicolor GISH and FISH allowed identification of a significant number of chromosomes in the B. juncea complement. The study also revealed that species of Brassica possess Arabidopsis-type telomeric repeats which in all genomes occupied exclusively terminal, that is, telomeric, locations of chromosomes.
Genome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D. villosum hybrids. For the first time, we show the advantages of FISH to reveal chromosome rearrangements in the tetraploid Secale × Dasypyrum hybrids. Based on the specific hybridization patterns of ribosomal 5S, 35S DNA and rye species-specific pSc200 DNA probes, a set of genotypes with numerous Secale/Dasypyrum translocations of 1R/1V chromosomes were identified in successive generations of allotetraploid S. cereale × D. villosum hybrids. In addition we analyse rye chromosome pairs using FISH with chromosome-specific DNA sequences on S. cereale × D. villosum hybrids.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.