Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Recently, we characterized multiple roles of the endoplasmic reticulum stress responsive element (ERSE) in the promotion of a unique headto-head gene pair: mammalian asparagine-linked glycosylation 12 homolog (ALG12) and cysteine-rich with EGF-like domains 2 (CRELD2). This bidirectional promoter, which consists of fewer than 400 base pairs, separates the two genes. It has been demonstrated that the ALG12 promoter shows less transcriptional activity through ERSE, but its basic regulatory mechanism has not been characterized. In this study, we focused on well-conserved binding elements for the transcription factors for ATF6, NF-Y and YY1 and the Sp1 and Ets families in the 5’-flanking region of the mouse ALG12 gene. We characterized their dominant roles in regulating ALG12 promoter activities using several deletion and mutation luciferase reporter constructs. The ALG12 gene is expressed in three distinct cell lines: Neuro2a, C6 glioma and HeLa cells. The reporter activity in each cell line decreased similarly with serial deletions of the mouse ALG12 promoter. Mutations in the ERSE and adjacent NF-Y-binding element slightly affected reporter activity. Each of the mutations in the GC-rich sequence and YY1-binding element reduced ALG12 promoter activity, and the combination of these mutations additively decreased reporter activity. Each mutation in the tandem-arranged Ets-family consensus sequences partially attenuated ALG12 promoter activity, and mutations of all three Ets-binding elements decreased promoter activity by approximately 40%. Mutation of the three conserved regulatory elements (GC-rich, YY1 and Ets) in the ALG12 promoter decreased reporter activity by more than 90%. Our results suggest that the promoter activity of the mouse ALG12 gene is regulated in a similar manner in the three cell lines tested in this study. The well-conserved consensus sequences in the promoter of this gene synergistically contribute to maintaining basal gene expression.
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel type of trophic factor. Recent studies indicate that the MANF gene is induced in response to endoplasmic reticulum (ER) stress through ER stress response element II (ERSE-II) in its 5′-flanking region. In this study, we evaluated the roles of six ER stress response transcription factors in the regulation of the promoter activities of the mouse MANF gene via ERSE-II using various types of mutant MANF luciferase reporter constructs. Treatment with thapsigargin (Tg) induced MANF mRNA generation in parallel with the elevation of ATF6α, sXBP and Luman mRNA levels in Neuro2a cells. Of the six transcription factors, ATF6β most strongly increased the MANF promoter activity via ERSE-II, while the effects of ATF6β and sXBP1 were moderate. However, overexpression of Luman or OASIS did not enhance ERSE-II-dependent MANF promoter activity in Neuro2a cells. To evaluate the relationships between transcription factors in the regulation of ERSE-II-dependent MANF promoter activity, we transfected two effective transcription factor constructs chosen from ATF6α, ATF6β, uXBP1 and sXBP1 into Neuro2a cells with the MANF reporter construct. The MANF promoter activity induced by co-transfection of ATF6α with ATF6β was significantly lower than that induced by ATF6α alone, while other combinations did not show any effect on the ERSE-II-dependent MANF promoter activity in Neuro2a cells. Our study is the first to show the efficiency of ER stress-related transcription factors for ERSE-II in activating the transcription of the mouse MANF gene in Neuro2a cells.
Real-time polymerase chain reaction (PCR) is currently widely used for the diagnosis of infections. We evaluated the time after treatment during which real-time PCR can detect dead bacteria. The presence of bacterial DNA was identified by real-time PCR through methicillin-resistant Staphylococcus (MRS)-PCR and universal PCR. Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, and Escherichia coli were each killed with alcohol, antibiotics, or heat treatment in vitro. The detection periods of MRS-PCR for MRSA treated by alcohol, vancomycin, linezolid, and heat were found to be less than 16, 8, 12, and 8 weeks, respectively. The detection period of universal PCR for S. epidermidis treated by alcohol, cefazolin, and heat was less than 20, 20, and 4 weeks, whereas that for E. coli was 8, 20, and 4 weeks, respectively. The presence of detectable bacterial DNA in infected arthroplasty patients before and after successful treatment was also assessed by MRS- and universal PCR. MRS-PCR was positive in 6 patients before treatment and all became negative after a mean interval of 20.8 weeks (95% confidential interval, 13.2 to 33.7) after treatment. Universal PCR detected remnant bacterial DNA in 4 patients at a mean of 15.2 weeks (95% CI, 12.4 to 18.0) after treatment and was negative in 7 patients at a mean of 17.3 weeks (95% CI, 10.6 to 24.0) after treatment. Our studies revealed that real-time PCR detects dead bacteria for several weeks, but this capability decreases with time and is likely lost by 20 weeks after treatment.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.