Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Achelatan lobsters, also known as spiny and slipper lobsters, develop via a highly specialised larval form. This special larva, phyllosoma, is flat, translucent, possesses elongate legs and can grow to enormous sizes. Although these larvae may appear very fragile, they are well-known as fossils. Thousands of specimens have been found in the lithographic limestone of Southern Germany (Tithonian, Upper Jurassic, about 150 mya). At least three types of fossil, but modern-appearing phyllosoma larvae are known. Additionally, fossil larvae that possess only some of the characters of modern-day phyllosoma larvae are known from the same Lagerstätte, but also from the younger limestone beds of Lebanon. Here we report a new achelatan fossil from the older Posidonia Shale (Toarcian, Lower Jurassic, 175–183 mya). The specimen shows certain characters of a phyllosoma larva, but other characters appear like those of post-phyllosoma stages of achelatan lobsters. This specimen is therefore the oldest occurrence of an achelatan lobster larva. We compare the new specimen with other fossil larvae with such mixed or “intermetamorphic” morphologies.
Dictyoptera, which comprises cockroaches, termites and mantids, is a quite successful group of insects in evolutionary terms with a long fossil record—roachoid insects were already abundant 315 million years ago in the Carboniferous forests. One of the most remarkable autapomorphies of extant dictyopterans, and possibly a major factor for their persisting success, is the ability to produce oothecae. Despite the robustness of this sort of egg package, fossils of oothecae are very rare, the oldest direct evidences being from the Cretaceous Crato Formation in Brazil (115 mya). The ability to produce oothecae is presumably linked to a specific ovipositor morphology, including a significant length reduction. Hence, ovipositor morphology can indirectly inform about the reproductive strategy of a species. Herein we describe the ovipositor morphology of various fossil forms of dictyopteran insects. Early fossil roachoids, in contrast to the modern forms, possessed a very long and prominent ovipositor, reminiscent of the ovipositor in orthopterans (Ensifera), indicating that these forms laid individual, rather small eggs into a substrate. We present examples from different fossil deposits, which show the entire range of ovipositor morphologies, from very long forms over forms with ovipositors partly reduced in length to modernappearing morphologies. Most remarkably, different shapes of ovipositors seem to be present in roachoids in the fauna of the 115 million years old Crato Formation—species with long prominent ovipositors co-existed with species with a reduced short and broad ovipositor. Additionally, females that carry oothecae attached to their abdomen indicate a third type of ovipositor: a further reduced ovipositor as seen in modern forms, which already allowed the internal production of oothecae.
An isolated exopod in uncompressed three−dimensional “Orsten”−type preservation from the Cambrian of Australia represents a new species of Marrellomorpha, Austromarrella klausmuelleri gen. et sp. nov. The exopod is composed of at least 17 annuli. Each of the proximal annuli carries a pair of lamellae: one lamella on the lateral side and one on the median side. The distal annuli bear stout spines in the corresponding position instead of lamellae, most likely representing early ontogenetic equivalents of the lamellae. The new find extends the geographical range of the taxon Marrellomorpha. Additionally, it offers a partial view into marrellomorph ontogeny. The occurrence of a marrellomorph fragment in “Orsten”−type preservation provides new palaeo−ecological insights into the possible connections between the “Orsten” biotas and other fossil Lagerstätten. Finding such connections is necessary for understanding the complex ecosystems of early Palaeozoic times.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.