Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A stem-group brachiopod, Oymurania gravestocki Ushatinskaya gen. et sp. nov. is described herein from the middle Atdabanian-lower Botoman Stages (-Cambrian Stage 3) of the Siberian Platform. The fossils were extracted from limestone beds of the Emyaksin, Perekhod, and Pestrotsvet formations as assemblages of disarticulated orthoconic to cyrtoconic porous shells in apatite preservation. The originally organophosphatic shells of Oymurania are externally similar to mitral sclerites (ventral valves) of the stem-group brachiopod Micrina, although no sellate-like sclerites, nor differentiated subapical area with apophyses were recognised in our material. The range of Oymurania shells with sub-central to posteromarginal apex is similar to that of ventral valves ofMickwitzia. Oymurania is also characterised by the system of radial and orthogonal canals open in pairs or triplets in small depressions or indentations of growth lamellae in the outer shell surface. The orthogonal (Micrina-Setatella type) and radial (horizontal setigerous tubes) canals are widespread among the early Cambrian stem-group brachiopods, such as Micrina, Mickwitzia, and Setatella. In addition to these canals, Oymurania exhibits a well-developed acrotretoid columnar microstructure, also known from Setatella. A broad subapical platform in cyrtoconic shells (presumably ventral valves) of Oymurania is interpreted homologous to the deltoid area in mitrals of Micrina and pseudointerarea/interarea in ventral valves of Setatella/paterinid brachiopods. Except with probable cell imprints and openings of orthogonal canals, no morphological differentiation was, however, reflected by the shell interior of Oymurania gravestocki. Being closely related to tannuolinids and mickwitziids, Oymurania complements the picture of diversification of the early Cambrian stem-group brachiopods that occurred in parallel with radiation of paterinids and other crow-group brachiopods on the Siberian Platform and worldwide.
3
88%
The Early Cambrian Burgess Shale−type fossil Lagerstätten of Yunnan Province (Chengjiang; Guanshan) are crucial in understanding the Cambrian bioradiation. Brachiopods are applied here as a critical model phylum to analyze the taphonomy of Yunnan fossil Lagerstätten, because shell and tissue composition of modern brachiopods can be compared with exceptionally preserved Cambrian remains. Systematic elemental mapping and energy−dispersive X−ray analyses have been carried out to study fossil brachiopods and their matrix from Cambrian Stages 3–4 and modern linguliform brachiopods from several geographical regions in order to evaluate the detailed structure of the shells and the biological and environmental influences on shell composition. Analyses of earliest Cambrian fossils encompassing the complete spectrum of weathering stages show a primary organo−phosphatic brachiopod shell, visible in unweathered specimens, and a successive dissolution and replacement of the shell during weathering, observable in specimens that underwent dif− ferent stages of weathering. Therefore, our study reveals that earliest Cambrian linguliform brachiopods from the Chengjiang and Guanshan Biotas developed organo−phosphatic shells as their Recent counterparts. Early carbon and apa− tite preservation together with rapid deposition in claystone, instead of early iron adsorption, appears crucial for the pres− ervation of highly delicate tissue. Primary calcium, phosphorus, organic carbon, and a multilayered shell are present, by inference between Cambrian fossils and Recent specimens, through the whole Phanerozoic. Elements such as silicon, sul− phur, calcium, phosphorus, and iron were detected, impregnated with organic compounds in some organs of modern Lingula, and related to the potential of fossilization of Cambrian linguliform brachiopods. Ferromanganese precipitates traced in the shell of in vivo specimens of modern Lingula may enhance the potential for fossilization too.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.