Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background. Caloric restriction (CR) leads to decrease metabolic intensity, which results in a reduction of oxygen consumption and the amount of free radicals. This can affect the function of the liver. Studies show that caloric restriction does not alter or significantly increase the enzyme activity associated with gluconeogenesis, but the effect was different according to the age of the model animals. Objective. The aim of the study was to determine the effect of caloric restriction on liver function in young and old ApoE/ LDLr-/- mice. Material and methods. Dietary experiments were performed on 2 and 5 month old male ApoE/LDLr-/- mice. Animals were divided into 3 experimental groups (n=6) and fed AIN’93G diet for 8 and 5 weeks, respectively. Control animals were fed ad libitum (AL) and housed in a colony cages. These animals were checked for dietary intake. The second group were also fed ad libitum but the animals were kept individually in cages (stress AL- sAL). Similarly to sAL group, the animals from the CR group were kept individually but received a 30% less diet compared to AL group. At the end of the experiment animals were euthanized and the blood, liver and adipose tissue have been collected. Alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST) were measured in plasma. Fatty acid profile was evaluated (relative %) in adipose tissue (GC-MS). Liver’s stetosis was assessed. Results were analyzed statistically (ANOVA, STATISTICA v.10.0). Results. CR ApoE/LDLr-/- mice showed significantly lower body weight compared to animals, both AL and sAL. There were no significant differences between ALT and AST in both younger and older animals. However, negative tendencies were more pronounced in younger animals. In young animals CR significantly increased liver weight compared to AL (4.14 vs 3.73g/100g). In adipose tissue fatty acid profile differed in CR mice compared to control in young animals. Conclusions. Caloric restriction did not affect liver enzymes in mice. Caloric restriction showed similar but not identical metabolic activity in young and old mice.
The regulation of vascular wall homeostasis by nitric oxide (NO) generated by endothelium is being intensively studied. In the present paper, the involvement of NO in the vascular endothelial growth factor (VEGF), insulin or leptin-stimulated proliferation of human endothelial cells (HUVEC) was measured by [3H]thymidine or bromodeoxyuridine incorporation. VEGF and insulin, but not leptin, increased NO generation in HUVEC, as detected with ISO-NO electrode. Proliferation of HUVEC induced by leptin was not changed or was higher in the presence of L-Nω-nitro-L-arginine methyl ester (L-NAME) a nitric oxide synthase (NOS) inhibitor. In contrast, L-NAME blunted the proproliferative effect of VEGF and insulin. Furthermore, we demonstrated that, in human arterial smooth muscle cells (hASMC) transfected with endothelial NOS (eNOS) gene, the generation of biologically active VEGF protein was NO-dependent. Inhibition of NO generation by L-NAME decreased the synthesis of VEGF protein and attenuated HUVEC proliferation induced by conditioned media from transfected hASMC. Endothelium-derived NO seems to participate in VEGF and insulin, but not leptin, mitogenic activity. Additionally, the small amounts of NO released from endothelial cells, as mimicked by eNOS transfection into hASMC, may activate generation of VEGF in sub-endothelial smooth muscle cells, leading to increased synthesis of VEGF protein necessary for turnover and restitution of endothelial cells.
10
51%
Mice with the knockout of endothelial nitric oxide synthase (eNOS ko) demonstrate symptoms resembling the human metabolic syndrome. NO has been recently demonstrated to be deeply involved in regulation of not only blood flow and angiogenesis, but also in modulation of mammalian basal energy substrate metabolism. Asymmetric dimethylarginine (ADMA) is an endogenous competitive inhibitor of NOS. The enzyme dimethylarginine dimethylaminohydrolase (DDAH) catabolizes ADMA, what leads to increase of endogenous NO bioavailability. This study was aimed to compare the brown (BAT) and white (WAT) adipose tissue gene expression of age matched mice with decreased (eNOS ko) and increased (overexpressing DDAH) endogenous NO generation. The 19 week old eNOS ko mice demonstrated significantly lower weight, higher circulating glucose, insulin, leptin and cholesterol concentrations. The adiponectin as well as fasting triglyceride concentrations were not significantly altered. Animals with DDAH knock in, presented significantly increased angiogenic activity than eNOS ko mice. The microarray analysis pointed to activation of adipogenesis-related genes in eNOS ko mice in WAT, what was in contrast with the inhibition observed in the DDAH overexpressing mice. The angiogenesis related gene expression was down-regulated in both models in comparison to WT animals. This study support the multipotential role of endogenous NO in maintaining homeostasis of energy substrate catabolism.
The aim of the study was to examine the allelic frequency of the -3826A>G mutation of UPC1 in patients with familiar obesity and to investigate putative association of this polymorphism with metabolic disorders. One hundred and eighteen overweight / obese patients participated in the study. The UCP1 polymorphism was determined by RFLP. Glucose, lipid, insulin and leptin levels were measured both during OGTT and OLTT. The majority of patients had a homozygous A/A genotype (51,38%), while 14,68% had a G/G genotype. We found no significant association of the G allele with either BMI or glucose tolerance. Patients with the homozygous G/G genotype had significantly higher fasting levels of TG (p<0.04) and decreased levels of HDL-cholesterol (p=0,004). They also had an increased concentration of FFA and the rise of TG levels during the OLTT compared to controls was significant (p=0,058). In addition, the carriers of the G/G genotype had the lowest insulin levels both during OGTT and OLTT. In our study we have demonstrated that the -3826A>G polymorphism of UCP1 does not play a major role in the development of obesity and/or disturbances of glucose metabolism. However, the increased levels of TG and FFA and decreased levels of HDL observed in carriers of the G allele suggest FFA-induced impairment of the HDL turnover and disturbance of the ß-cell function, both of which are risk factors for endothelial injury.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.