Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Renal vessels exhibit a high degree of anatomical variations in terms of their number, level of origin, diameter and topographical relationships. In particular, it applies to the left renal vein which can take retroaortic or even circumaortic placement. Anatomical variations of the left renal vein may be of great clinical significance, particularly in the case of renal transplantation, retroperitoneal surgery as well as vascular or diagnostic procedures. Thus, the aim of this report was to present a complete anatomical description of two cases of the circumaortic left renal vein (CLRV; circumaortic renal collar) co-existing with the presence of various vascular anomalies. In the first case, the circumaortic renal collar was connected via a large anastomosis with the hemiazygos vein and was associated with the presence of the supernumerary left renal artery located below the main left renal artery. In the second case, the circumaortic renal collar was accompanied by the renal artery dividing close to its origin. Moreover, in the latter case, the fusiform aneurysm of the abdominal aorta was observed. In both cases, the CLRV began as a single and short trunk. On its further course, the initial segment of the CLRV was divided into two limbs — anterior (anterior left renal vein) and posterior (posterior left renal vein). Both anterior and posterior limb of the CLRV opened into the inferior vena cava. (Folia Morphol 2019; 78, 2: 437–443)
Klingler’s technique was discovered in the 1930s. It is a modified method of brain fixation and dissection, based on freezing and thawing of the brain tissue, subsequent peeling away of white matter fibres and the gradual exposure of white matter tracts. The added value of this technique is that it is carried out in a stratigraphic manner. This fact makes it an invaluable tool for an in-depth understanding of the complex anatomical organisation of the cerebral hemispheres. The purpose of this paper is to provide a review of Klingler’s method while taking into account the original description of the technique and its value for medical training. The historical background, the concise outline of white matter organisation, as well as our own experience in using this procedure for research and teaching activities were also included. The fibre dissection technique may still be considered an excellent complementary research tool for neuroanatomical studies. Numerous detailed observations about the white matter topography and spatial organisation have been recently made by applying this method. Using this technique may also improve understanding of the three-dimensional intrinsic structure of the brain, which is particularly important both in under- and postgraduate training in the field of neuroanatomy. (Folia Morphol 2019; 78, 3: 455–466)
Background: The deltoid muscle (DM) plays an essential role in retaining the stability and correct function of the upper limb. The aims of the study were to perform a detailed morphological analysis of the DM including its innervation, structure, attachments and relationship with adjacent structures. Materials and methods: The study was carried out on 17 formalin-fixed cadaveric upper limbs. After dissection of the shoulders, the DM was visualised and analysed. The following measurements of the muscle were performed for all cases: width of attachments (acromial, clavicular, spinal), entire width of origin, length of the component parts (acromial, clavicular, and spinal) and length of the arm. Results: In all specimens, a characteristic ‘segmented’ innervation scheme of the DM was observed. The axillary nerve (AN) was always divided into an anterior branch (abAN) and a posterior branch (pbAN). Two variations of the DM innervation were distinguished: variation I, where the clavicular and the acromial parts were innervated by the abAN, while the spinal part was supplied both by abAN (anterior fibres) and by pbAN (posterior fibres), and variation II, in which the spinal part did not have double innervation — the abAN innervation area covered only the acromial and clavicular parts, and the entire spinal part was supplied by pbAN. Both variations had a segmented arrangement of sub-branches reaching individual parts of the DM, which was particularly distinct in the clavicular and acromial parts. Correlations were found between the entire width of the DM origin and the length of the arm (p = 0.001), between the length of the acromial part of the DM and the length of the arm (p = 0.003), between the width of the spinal attachment and the length of the spinal part (p = 0.002), and between the width of the spinal attachment and the length of the arm (p = 0.0008). Conclusions: The study confirmed the existence of a characteristic segmented innervation scheme of the DM which corresponds with the segmented morphology of its individual parts. An analysis of the internal structure of the muscle specific architectonics based on the tendon system was also presented. (Folia Morphol 2014; 73, 2: 216–223)
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.