Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The mRNA differential display technique was performed to investigate the differences in gene expression in the liver tissues from Meishan and Large White pigs. One novel gene that was differentially expressed was identified through semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encoding a protein of 501 amino acids has high homology with the lipase, hepatic (LIPC) of seven species—cattle (82%), rhesus monkey (79%), chimpanzee (78%), rabbit (77%), human (78%), mouse (73%) and rat (72%)—so that it can be defined as the swine LIPC gene. Phylogenetic analysis revealed that the swine LIPC gene has a closer genetic relationship with the LIPC of cattle. Tissue expression profile analysis indicated that the swine LIPC gene is also differentially expressed in other detected tissues from Meishan and Large White pigs. Our experiment suggested that the swine LIPC gene might play an important role in the superabundant fat deposition of Chinese pigs.
The structural configuration of bioretention plays an important role in the consumption and purification of nitrogen pollutants in rainfall runoff. Three layered bioretention tanks – 7#, 9#, and 10# – with artificial packing layers of fly ash mixing sand, blast furnace slag, and planting soil, respectively, were selected for intermittent and continuous operational tests. All load-reduction rates of nitrogen pollutants for intermittent running test exceeded 40% in three tanks, and tank 7# showed >70%. Moreover, the effluent pollutant concentration of 7# increased with time, whereas those of 9# and 10# fluctuated and then decreased slowly. The correlation model between TN removal and its influencing factors was established using the partial least regression method. Modeling analysis suggested that the filler type was the most important factor affecting TN removal. TN removal was positively correlated with packing factor and submerged zone height, while it was negatively correlated with antecedent dry time and influent loading. Soil pollutant original content and texture classification were detected before the continuous running test. The percentages of NO₃-N and NH₃-N accumulating in three facilities accounted for a total influent load of approximately 77% (7#), 61% (9#), and 43% (10#) when the exhaustion point was reached, demonstrating the relatively poor performance of planting soil.
The objective of this study was to investigate the effect of Selenium (Se) supply (0, 3, 6, 12, 24 mg kg−1) on the growth, photosynthetic characteristics, Se accumulation and distribution of flue-cured tobacco (Nicotiana tabacum L.). Results showed that low-dose Se treatments (≤6 mg kg−1) stimulated plant growth but high-dose Se treatments (≥12 mg kg−1) hindered plant growth. Optimal Se dose (6 mg kg−1) stimulated plant growth by reducing MDA content and improving photosynthetic capability. However, excess Se (24 mg kg−1) increased MDA content by 28%, decreased net photosynthetic rate and carboxylation efficiency by 34% and 39%, respectively. The Se concentration in the roots, stems, and leaves of the tobacco plants significantly increased with increasing Se application. A linear correlation (R = 0.95, P < 0.01) was observed between Se level and tobacco plant tissue Se concentration. This correlation indicated that the tobacco plant tissues were not saturated within the concentration range tested. The pattern of total Se concentration in the tobacco plant tissues followed the order root > leaf > stem. The Se concentration in the roots was 3.17 and 7.57 times higher than that in the leaves and stems, respectively, after treatment with 24 mg kg−1 Se. In conclusion, the present study suggested that optimal Se dose (6 mg kg−1) improved the plant growth mainly by enhancing photosynthesis, stomatal conductance, carboxylation efficiency and Rubisco content in the flue-cured tobacco leaves. However, the inhibition of excess Se on tobacco growth might be due to high accumulation of Se in roots and the damage of photosynthesis in leaves.
The media and structural optimization in bioretention systems play important roles in removing pollutants from urban stormwater runoff. Ten bioretention basins were constructed by adding water treatment residual (WTR), green zeolite, flyash, and coconut bran to traditional bioretention soil (65% sand + 30% soil + 5% sawdust, by mass), respectively, through mixing or layering. The steady infiltration rates of modified media were 3.25~62.78 times those of plant soil. The peak flow reduction rates of plant soil (1#) and flyash (7#) basins were significantly high, ranging from 78.09% to 92.91% (median = 86.52%) and 88.01% to 96.85% (median = 93.62%).The outflow concentrations of Cu and Zn were superior to Class II limitation (1.0 mg·L⁻¹) in surface water environmental quality standards in China. The outflow concentration was inferior to Class V for COD and Cd. COD load reduction rate decreased with the increase of the recurrence interval and discharge ratio, which increased with the increase of inflow concentration. Although load reduction rate of heavy metal Cd increased with the increase of these three influencing factors, the reduction rate of Zn and Cu in heavy metals occurred without certain regularity. The median loading reduction rates of COD were the highest for layered media structure bioretention basins (6# and 8#). The heavy metal load reduction rates of 3#~6# (mixed or layered media structure, adding 10% WTR as modifier) and 8# (layered media structure, adding 10% fly ash as modifier) were higher than other basins, and the median load reduction rate was mostly above 80%.
It has been reported that aluminum (Al) toxicity is a major limiting factor for plant growth and production on acidic soils. Boron (B) is indispensable micronutrient for normal growth of higher plants, and its addition could alleviate Al toxicity. The rape seedlings were grown under three B (0.25, 25 and 500 μM) and two Al concentrations [0 (−Al) and 100 μM (+Al) as AlCl₃·6H₂O]. The results indicated that Al stress severely hampered root elongation and root activity at 0.25 μM B while the normal (25 μM) and excess (500 μM) B improved the biomass of rape seedlings under Al exposure. Additionally, normal and excess B treatment reduced accumulation of Al in the roots and leaves under Al toxicity, which was also confirmed by hematoxylin with light staining. This indicates that both normal and excess B could alleviate Al toxicity. Furthermore, it also decreased the contents of malondialdehyde and soluble protein under Al toxicity. Likewise, superoxide dismutase activity (SOD) improved by 97.82 and 131.96% in the roots, and 168 and 119.88% in the leaves at 25 and 500 µM B, respectively, while the peroxidase and catalase activities dropped as a result of Al stress. The study results demonstrated that appropriate B application is necessary to avoid the harmful consequences of Al toxicity in rape seedlings.
The karst terrain of Guizhou in southwestern China is ecologically fragile, but has undergone severe heavy metal contamination. To assess such contamination, the spatial distribution of cadmium (Cd) within soils was studied in a lead (Pb)-zinc (Zn) smelting area, coal mining area, Pb-Zn mining area, sewage irrigation area, and an uncontaminated area. Cd concentrations were highest in topsoil, with the highest value of 23.36 mg/kg in the Pb-Zn mining area and lowest value of 0.46 mg/kg in the uncontaminated area. Cd content decreased from 0 to 0.8 m depth, then sharply increased, reflecting Cd precipitation within the contaminated soil profiles. Migration of Cd within the soil was affected by organic content in the Pb-Zn smelting area (R² = 0.99**), coal mining area (r = 0.72*), and Pb-Zn mining area (r = 0.73*). In contrast, Cd accumulated within a clay horizon in the uncontaminated area, where the correlation between Cd and specific surface area was 0.78**; Cd concentrations reached 2.11 mg/kg within this horizon. Reducible, oxidizable, and acid-exchangeable fractions accounted for 60-80% of total Cd in soils having pH values of 5.05-6.86. This indicates that Cd could easily transfer from soil to food or water, leading to human health and environmental risks.
MEST and COPG2 in human MEST imprinted cluster are two of good candidate genes responsible for primordial growth retardation including Silver–Russell syndrome. In order to increase understanding of these genes in pigs, their cDNAs are characterized in this report. By real-time quantitative RT-PCR and polymorphism-based method, tissue and allelic expression of both genes were determined using F1 reciprocal Landrace × Rongchang pig crossbreds. The transcription levels of MEST differed between tissues and decreased as development proceeded. The gene was imprinted and paternally expressed in heart, stomach, skeletal muscle, kidney, lung, bladder,tongue and fat, while biallelic expression was detected in liver, small intestine and spleen of onemonth-old pigs. The porcine COPG2 was differentially expressed between neonatal tissues and showed biallelic expression in postnatal tissues. Furthermore, the transcript of COPG2 in bladder and small intestine increased with age. It is concluded that tissue expression of porcine MEST is similar to, while COPG2 differs from other mammalian homologues. In addition, porcine MEST has development-specific imprinting, but imprinting of COPG2 in mammals is controversial.
We investigated the effects of nutrient levels on the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), seven surface sediment samples from small reservoirs at different nutrient levels were collected from the eastern, central, and western parts of Huashan watershed in Chuzhou, Anhui Province to determine the abundance and community composition of AOA and AOB. The results showed that the abundance of bacterial amoA gene (1.85×107 to 2.86×108 g/dry sediment) was higher than that of archaeal amoA gene (1.25×105 to 1.23×106 g/dry sediment) in all sediment samples. The abundance of the archaeal amoA gene exhibited significant positive correlations with total nitrogen concentrations, whereas the abundance of bacterial amoA gene showed significantly negative correlation with pH. Archaeal amoA gene sequences included Nitrososphaera and Nitrosopumilus clusters and the majority of Nitrosospira and Nitrosomonas oligotropha lineages.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.