Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
As most gramineous plants, guinea grass (Panicum maximum) comprise cellulosic biomass, which may be used as a feedstock for bioenergy. In order to develop such potential energy plants on copper-polluted lands, the hydroponic experiments with Cu, Paclobutrazol (PP333, a kind of antigibberellin) and plant growth-promoting bacterial endophyte (PGPB) treatments were carried out in a greenhouse. The seedlings of two cultivars of guinea grass, GG1 (P. maximum var. Natsukomaki) and GG2 (P. maximum var. Natsukaze) in 3 weeks old were treated, respectively, with different Cu treatments [0(CK), 100, 200, 300, 400, 500 µM l⁻¹ Cu] for estimating Cu toxicity. The results showed that elevated Cu restrained plant growth and reduced biomass. According to the EC50 value [the Cu concentration when the relative gain in fresh weight ratio was 50% of control] of two tested cultivars, the concentration of Cu for further experiments was decided as 300 µM l⁻¹. Both pretreatments of PP333 (200, 400, 600 mg l⁻¹) and PGPB (Pantoea sp.) significantly alleviated the negative affect caused by stress of 300 µM l⁻¹ Cu. The pretreatment of 400 mg l⁻¹ PP333 promoted both two cultivars in biomass, compared to 300 µM l⁻¹ Cu treat. The inoculation of Pantoea sp. Jp3-3 increased shoot dry weight, compared to Cu treat. The results suggested that the main reason for both PP333 and Pantoea sp. Jp3-3 enhanced Cu tolerance in guinea grass was that their pretreatments significantly decreased Cu absorption and accumulation under excessive Cu stress. The present study has provided a new insight into the exploitation of energy plant in heavy metal polluted condition by the way of plant growth regulation for increasing heavy metal tolerance.
Due to the shortage of water resources in China, the state has implemented a series of rainwater harvesting projects. The safety of water quality cannot be guaranteed due to the lack of an effective construction, running, and management system. Slow filters are low-maintenance systems that do not require special equipment. In order to improve the performance of SSF in terms of the removal of bacteria and solid granules, e.g., the microorganisms attached to the surface of a single grain of the filtering material under a scanning electron microscope (50×) have been studied. Based on the improvements of conventional slow sand filtration (SSF), the bio-slow sand filtration method has effectively mitigated and helps to remove bacteria and other microbiological contaminants, as well as heavy metals, ammonia, nitrogen, organic material, and turbidity of the harvested rainwater. The removal efficiency of bioslow sand filtration was approximately 20-30% on particulate organic carbon, above 95% on ammonianitrogen, and better than 96%, 95%, 95%, 80%, 70%, and 60% on Cu2+, Cd2+, Fe2+, Zn2+, Mn2+, and Pb2+, respectively. The effluent quality meets the requirements of “standards for drinking water quality” in China. The result indicated the bio-slow sand filtration method could achieve better water quality results as an available water treatment technology.
The study evaluated the effects of branched-chain volatile fatty acids (BCVFA) addition on growth performance, ruminal fermentation, nutrient digestibility, hormone secretion and hepatic gene expression in dairy calves. Thirty-six Holstein male calves (45 ± 3.5 days of age; 56 ± 1.8 kg body weight) were randomly assigned to four groups: control, low-BCVFA (LBC), mediumBCVFA (MBC) and high-BCVFA (HBC) with 0, 1.5, 3.0 and 4.5 g BCVFA per kg dietary dry matter (DM), respectively. Supplemental BCVFA was premixed into concentrate of the ration. DM intake and average daily gain (ADG) were increased, and feed conversion ratio was decreased in MBC and HBC groups in comparison to control one. In MBC and HBC groups ruminal pH and ammoniaN were lower, whereas total volatile fatty acids concentration was higher than in control group. Acetate:propionate ratio and digestibility of DM, organic matter, crude protein, ether extract, neutral detergent fibre and acid detergent fibre were higher in MBC and HBC groups than in control one. Blood concentration of glucose, albumin, growth hormone releasing hormone, growth hormone (GH), insulin (INS) and insulin-like growth factor-1 (IGF-1), and hepatic mRNA abundance of GH, INS, IGF-1, receptors of GH, INS and IGF-1, mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E-binding protein 1 and ribosomal protein S6 kinase were higher in MBC and HBC than in control group. It was indicated that BCVFA addition increased ADG by stimulating feed intake, ruminal fermentation, nutrient digestion and hepatic mTOR expression, and the optimum dose of BCVFA was 3.0 g/kg DM under the current experimental conditions.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.