Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The house cat Felis catus was introduced to Australia as a pet and means of rodent control over 200 years ago, but now has established feral populations and has become a serious threat to native wildlife. Using stomach content analysis of 73 feral cats from semi-arid grassland habitats in Queensland, Australia, we aimed to identify dominant prey groups in the cats' diet and to explore associations between the diversity of prey eaten and attributes of the cats including body size, condition, sex, age and coat colour. We also sought to determine any relationships between cat size and the size of the dominant prey in the diet, the long-haired rat Rattus villosissimus. Mammals and reptiles were the dominant prey, with R. villosissimus occurring in 60 % of samples and comprising more than half of all prey by volume. Birds and terrestrial invertebrates were the next most important contributors to the diet, but fish, frogs and freshwater crustaceans also were surprisingly well represented. The dietary diversity of cats was largely unrelated to any of the cat attributes that we measured, although a positive relationship emerged between cat head width and the range of prey types eaten. Our study was conducted during a population irruption of R. villosissimus and confirms that cats are able to exploit an abundant focal prey resource when the opportunity occurs. Further research now is needed to explore associations between diet and cat attributes during periods when rats are scarce.
Foraging theory predicts that animals should forage so as to maximize their net rate of energy gain or to minimize their risk of starvation. In situations where prey numbers fluctuate dramatically, theory predicts further that foragers will eat ‘optimal’ prey when it is abundant but expand their diet to include other prey types when the optimal prey is scarce; this is the alternative prey hypothesis. Here, we test this prediction by analyzing the diet of a mammalian predator, the feral house cat Felis catus, during periods of scarcity and abundance of the long-haired rat Rattus villosissimus. We also investigate whether the body condition of feral cats differs during different stages of the prey population cycle. Feral cats were shot during culling operations in semi-arid grassland habitats in central Queensland, Australia, and the stomach contents later identified. We found that the body condition of feral cats did not differ between phases of the prey population cycle, but the diets of cats culled when long-haired rats were scarce were significantly more diverse than when this rodent was abundant. Rats comprised about 80 % of cats’ diet by volume and frequency of occurrence when they were present, whereas birds, reptiles and invertebrates comprised the bulk of the diet when rats were not available. We conclude that, whilst feral cats are often thought to be specialist predators, they may be better considered as facultative specialists that will shift their diet in predictable ways in response to changes in the abundance of primary prey.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.