Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
We have established a shoot regeneration system and genetic transformation of cockscomb (Celosia cristata and Celosia plumosus). The best results in terms of frequency of shoot regeneration and number of shoot buds per explant are observed on media supplemented with 0.5 mg l⁻¹ 6-BA (for explants of apical meristems of C. cristata) or 2.0 mg l⁻¹ 6-BA, 0.5 mg l⁻¹ NAA and 0.5 mg l⁻¹ IAA (for hypocotyls explants of C. plumosus). We use apical meristems of C. cristata and hypocotyls of C. plumosus as the starting material for transformation. A novel KNOTTED1-like homeobox1 (KNOX), PttKN1 (Populus tremula × P. tremuoides knotted1) isolated from the vascular cambial region of hybrid aspen, is introduced into cockscomb by Agrobacterium. A series of novel phenotypes are obtained from the transgenic cockscomb plants, including lobed or rumpled leaves, partite leaves and two or three leaves developed on the same petiole, on the basis of their leaf phenotypes. Transformants are selected by different concentrations of kanamycin. Transformants are confirmed by PCR of the NptII gene and PCR or RT-PCR of PttKN1 gene. Furthermore, RT-PCR shows that 35S:: PttKN1 RNA levels do not correlate with phenotypic severity. It is discussed that our results bring elements on possible function of PttKN1 gene. To our knowledge, genetic transformation of cockscomb is first reported.
Carnation (Dianthus caryophyllus L.) is one of the most important ornamental plants in the world. Though morphological modification of carnation is very important to its commercial value, there have been no relevant reports until now. PttKN1 (Populus tremula × Tremuoides knotted1), isolated from the vascular cambial region of hybrid aspen, is a novel member ofKNOXgene family. In this paper, we transformed 35S:PttKN1 to carnation via Agrobacterium tumefaciens. All primary transformants subsequently obtained were placed into phenotypic categories and selfpollinated. A total of 32 T0 progeny with aberrant phenotypes were obtained. PCR assay proved the validity of these transgenic plants. Phenotypes of 32 35S:PttKN1 plants were distinct from those of wild-type plants, including: (1) modification of phyllotaxis (15/32): wild-type carnation was with typical opposite phyllotaxis, while transgenic plants displayed tricussate whorled and multiple-cussate whorled phyllotaxis. Irregular modification of phyllotaxis was also observed; (2) modification of stem (9/32): wild-type stems were round; however, some transgenic plants exhibited much thicker and flatter stem; (3) the whole transgenic plants of carnation (8/32) became dwarf. These morphological modifications of carnation indicate that we have successfully attained some novel lines of carnation. These lines can have potential practical applications. In conclusion, the selection of stably genetic lines is discussed.
Waterlogging is a main stress factor during the late growing stage of winter wheat (Triticum aestivum L.) in the southern Huanghuai and Yangtze Valley regions of China. The effects of nitrogen spraying on post-anthesis of winter wheat under waterlogging stress were studied in continuous growing seasons from 2009 to 2011. The results showed that waterlogging after the anthesis stage significantly reduced root respiratory activity, leaf greenness (SPAD reading), photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tᵣ) by averages of 11.09, 10.75, 15.18, 8.97 and 8.82 %, respectively, increased intercellular CO₂ concentration (Cᵢ) by 9.74 % and decreased grain number per spike, 1,000-grain weight and grain yield by 8.07, 12.68 and 20.11 %, respectively. Nitrogen spraying significantly improved root respiratory activity, leaf greenness (SPAD reading), photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tᵣ) by 4.96, 7.35, 7.01, 5.09 and 5.09 %, respectively, reduced intercellular CO₂ concentration (Cᵢ) by 9.74 % and increased grain number per spike, 1,000-grain weight and grain yield by 4.71, 6.45 and 11.48 %, respectively. However, neither nitrogen spraying nor waterlogging had significant effects on spike number. There was significant interaction between waterlogging and nitrogen spraying. Our results suggest that nitrogen spraying is an effective way to alleviate the negative effects of waterlogging stress after anthesis stage in winter wheat.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.