Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Mitochondria are multifunctional organelles, primarily involved in the fundamental biological process of respiration. The efficient functioning of mitochondria depends on the proper transport, sorting, and assembly of mitochondrial proteins that originate either from nuclear or mitochondrial genomes. Both nuclear and mitochondrial gene defects that result in pathological variants of proteins have been implicated in a variety of mitochondrial diseases. The nuclear‑encoded proteins make up the large majority of proteins involved in the formation of mitochondria, including the respiratory chain complexes. The ubiquitin proteasome system (UPS) in the cytosol is involved in degradation of cellular proteins and maintaining protein homeostasis. By multiple lines of evidence, we have demonstrated the contribution of the UPS to mitochondrial protein quality control. The UPS degrades a portion of mitochondrial proteins, including mislocalized proteins, in both yeast and mammalian systems. Furthermore, mislocalization of mitochondrial proteins increases the ability of the proteasome to degrade cellular proteins. Thus, the UPS constitutes an important factor that affects the mitochondrial protein import, influences the mitochondrial proteome, and links the mitochondrial status with regulation of cellular protein homeostasis. Interestingly, pathologic variants of mitochondrial proteins can be mistargeted and fully degraded by the proteasome before they reach their final destination inside mitochondria. Inhibition of proteasomal degradation by commonly used proteasome inhibitors results in rescue of proteins and their import into the mitochondria. Thus, UPS inhibition can provide a benefit to malfunctioning mitochondria and cells. We propose that targeting the UPS should be considered as a therapeutic strategy for mitochondrial diseases.
In contrast to most other eukaryotic organisms, yeast can survive without respiration. This ability has been exploited to investigate nuclear genes required for expression of mitochondrial DNA. Availability of complete Saccharomyces cerevisiae genomic sequence has provided additional help in detailed molecular analysis. Seven of the eight major products encoded by mitochondrial DNA are hydrophobic subunits of respiratory complexes in the inner membrane. Localization of the translation process in the same cellular compartment ensures synthesis of mitochondrially encoded proteins near sites of their assembly into multimeric respiratory complexes. Association of mitochondrial ribosomes with the membrane is mediated by mRNA-specific translational activators, that are involved in the recognition of initation codon. The newly synthesized mitochondrial proteins are transferred to membrane by a specific export system. This review discusses the role of membrane-localized factors responsible for quality control and turnover of mitochondrially synthesized subunits as well as for assembly of respiratory complexes.
We studied expression of the NAM9 gene of Saccharomyces cerevisiae that was previously reported to code for a mitochondrial ribosomal protein. Increase in NAM9 gene dosage is accompanied by the increase in both mRNA and protein. The levels of the NAM9 transcript and protein are both reduced in cells growing on glucose as compared to cells growing on galactose as a carbon source. Nam9p accumulates to the same level in rho(o) and rho(+) cells. These results confirm previous data indicating diverse regulation of different mitochondrial ribosomal protein genes and suggest that expression of Nam9p is not co-ordinated with the expression of other mitochondrial ribosomal components.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.