Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Chromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH). This work aims to find chromosome identification of Aegilops species and Aegilops × Secale amphiploids, which can be used in cereal breeding as a source of favourable agronomic traits. Four diploid and two tetraploid Aegilops species and three Aegilops × Secale hybrids were analysed using FISH with pSc119.2, pAs1, 5S rDNA and 25S rDNA clones to differentiate the U-, M-, Sshand D-subgenome chromosomes of Aegilops genus. Additionally, GISH for chromosome categorization was carried out. Differences in the hybridization patterns allowed to identify all U-, M-, Ssh- and D-subgenome chromosomes. Some differences in localization of the rDNA, pSc119.2 and pAs1 sequences between analogue subgenomes in diploid and tetraploid species and Aegilops × Secale hybrids were detected. The hybridization pattern of the M and S genome was more variable than that of the U and D genome. An importance of the cytogenetic markers in plant breeding and their possible role in chromosome structure, function and evolution is discussed.
The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challengefor today’s medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.
Endopeptidase marker EpD1b and STS marker XustSSR2001-7DL are closely linked to very effective eyespot resistance gene Pch1. Because of this, the aim of this study was to compare the results obtained under lab conditions using such markers with the results obtained under field conditions. 134 wheat breeding lines and Triticum aestivum L. var. Randevous used as a eyespot resistance control were analized. The combination of three methods allowed to select eight completely resistant or high resistant lines, that could be used in following breeding processes. Results obtained using endopeptidase and STS markers in 100% correlate with the phenotyping scoring.
Eyespot is one of the most important fungal diseases of the stem base of wheat (Triticum aestivum L.). The presented study clearly demonstrated that the Pch1 gene was the main effective source for reducing the eyespot disease score in the analyzed winter wheat lines. Nevertheless, Pch1 was present only in 8−9% of the investigated lines. Using an isoenzymatic marker and molecular markers, the presence of the Pch1 gene and lack of the Pch2 gene was identified in six lines. Two lines, SMH 9409 and DL 358/13/4, were polymorphic in an isoenzymatic marker study. In the remaining three lines, C 3373/11-1, KBH 15.15 and KBP 1416, the Pch1 gene was identified only with the use of an isoenzymatic marker. Both genes Pch1 and Pch2, as well as the resistant variety Rendezvous, were found in three lines: DD 248/12, KBP 15.2 and STH 4431. In line DD 708/13, the presence of the Pch1 and Pch2 genes was identified, where the association between the Pch1 and the locus of the Xorw5 marker was broken. It was shown that the presence or absence of Pch1 and Pch2 genes did not significantly affect the grain yield (from the plot), although the yield was highest in the presence of both genes. A significant effect of the presence of the Pch1 gene on thousand kernel weight (TKW) was observed. Lines with the Pch1 gene showed significantly higher TKW values than lines without both genes or with the Pch2 gene only.
Eyespot can reduce yields, even up to 50%. There are four genetically characterized resistances in wheat varieties, controlled by: (1) the Pch1 gene, transferred from Aegilops ventricosa; (2) the Pch2 gene, originating from wheat variety Capelle Desprez; (3) the Pch3 gene, originating from Dasypyrum villosum; and (4) the Q.Pch.jic-5A gene, a quantitative trait locus (QTL) located on chromosome 5A of Capelle Desprez. However, those loci have drawbacks, such as linkage of Pch1 with deleterious traits and limited effectiveness of Pch2 against the disease. Here we present an initial study which aims to characterize wheat pre-registration breeding lines carrying 12 eyespot resistance genes, consider their resistance expression in inoculation tests and the influence of resistance genotypes on the yield. We selected four groups of breeding lines, carrying: (1) the Pch1 gene alone: one line; (2) the Pch2 gene alone: four lines; (3) the Q.Pch.jic-5A gene alone: one line; and (4) Pch1 + Q.Pch.jic-5A: three lines. For the first time, the effect of the combination of Pch1 and Q.Pch.jic-5A genes was compared with resistance conferred by Pch1 or Q.Pch.jic-5A alone. We found significant differences between infection scores evaluated in resistant lines carrying Pch1 and Q.Pch.jic-5A alone, while no differences in terms of the level of resistance expression were detected between Pch1 alone and Pch1 + Q.Pch.jic-5A, and between wheat lines carrying Pch1 and Pch2 alone. Moreover, we demonstrated that the Pch1 gene, together with an Ae. ventricosa segment, caused statistically significant yield losses, both as a single eyespot resistance source or in a combination with Q.Pch.jic-5A. Yield scores showed that wheat lines with Q.Pch.jic-5A had the highest yields, similar to the yielding potential of Pch2-bearing lines and control varieties.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.