Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 38

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Serotoninergic neurons projecting from the brainstem to the spinal cord are engaged in initiation and control of the locomotor movements. This effect is exerted by actions on motoneurons as well as on the spinal cord neuronal network for locomotion, the Central Pattern Generator (CPG). The serotonergic neurons send their axons to specific neuronal target in the spinal cord where the different types of serotonergic receptors allow the serotonergic system to play multiple roles in the control of locomotion. Using defined serotonergic agonists and antagonists we demonstrated in intact and in paraplegic adult rats that the 5-HT2 receptors control CPG activation as well as motoneuron output, while 5-HT7 receptors activate the locomotor CPG and control interneurons responsible for intra-and interlimb coordination. The combined use of agonists of the 5-HT2 and 5-HT7 receptors in a low dose, that is not effective when applied by either drug alone, results in production of wellcoordinated weight supported locomotion with a reduced need for exteroceptive stimulation. Next we found that in adult paraplegic rats intraspinal grafting of different populations of 5-HT neurons dissected from embryonic brainstem can activate the spinal cord circuitry below the total transection and enhance recovery of plantar hindlimb stepping. However, the locomotor recovery differed depending on the source of the grafted cells. The best effect of motor recovery was obtained using a combination of B1, B2 and B3 serotonergic neurons for grafting. In addition, we confirmed using defined serotonergic antagonists that the action of reestablished serotonergic innervation responsible for locomotor recovery is mediated by 5-HT2 and 5-HT7 receptors, as it is in the normal condition of himdlimb locomotor control. Our investigations demonstrate the marked potential of the remaining spinal cord circuitry below the total transection to enhance recovery of plantar hindlimb stepping in paraplegic adult rats.
It is known that neural circuitry in the spinal cord below a total transection is almost totally devoid of serotonin. As a consequence of spinal injury rats do not walk spontaneously. However, chronic spinal rats can be induced to perform proper plantar stepping by tail stimulation in the upright posture. Such plantarstepping is altered by removal of afferent feedback from the paws showing that sensory feedback from the foot facilitates the spinal central pattern generator (CPG) for locomotion when serotonergic innervation is missing. Although spinal rats can be induced to walk in the upright posture, they do not display recovery of quadrupedal locomotion in the horizontal posture typical for progression in rodents. Our data show that activation of 5-HT2A and 5-HT7/1A receptors using their agonists facilitates plantar stepping in the horizontal posture but interferes with upright stepping in paraplegic rats. In our next investigations we found that in intact adult freely moving rats intrathecal application of the selective 5-HT7 antagonist SB269970 induces hindlimb paralysis. This occurs without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and inter-limb coordination during locomotion in intact rats but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR) in adult rat decerebrate preparations. During the recovery period, after transient blocking of MLR evoked fictive locomotion, the amplitude and frequency of rhythmic activity was reduced. The lack of effects on coordination by SB269970 application in paralyzed decerebrate rats with no afferent feedback indicates a critical role of 5-HT7 receptor mediated control of sensory pathways during locomotor activity. Our data show that for optimal coordinated locomotor movements in adult rats, in addition to activation of the serotonergic system, a potent afferent feedback from the foot seems to be necessary FINANCIAL SUPPORT: This work has been supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska‑Curie grant agreement no 665735 (Bio4Med) and by the funding from Polish Ministry of Science and Higher Education within 2016–2020 funds for the implementation of international projects (agreement no 3548/H2020/COFUND/2016/2).
More than a hundred years of extensive studies have led to the development of clinically valid animal models of spinal cord injury (SCI) used to investigate neurophysiological mechanisms, pathology and potential therapies. The cat and rat models of SCI were found particularly useful due to several behavioral responses that correspond to clinical symptoms seen in patients. This review concentrates on recovery of motor behavior in the rat and cat models of thoracic spinal cord injury. At the beginning an outline of the general concept of neural control of locomotion: the existence of a spinal network producing the locomotor activity and the supraspinal and sensory inputs that influence this network is presented. Next, the severity of functional impairment in relation to the extent and precise location of lesions at the thoracic level in cats and rats is described. Finally, the impact of animal studies on the treatment of SCI patients and the possibility that a spinal network producing the locomotor activity also exists in humans is discussed.
BACKGROUND AND AIMS: Serotonin, which is supplied to the spinal cord by serotoninergic cells localized in the raphe nuclei and parapiramidal areas of the medulla, plays a very important role in control of the spinal locomotor central pattern generator (CPG). In our previous study we showed that intraperitoneal application of: 8-OH-DPAT (5-HT1A and 5-HT7 serotonin receptor agonist) and quipazine (mainly 5-HT2A serotonin receptor agonist), or intraspinal transplantation of serotonergic cells isolated from 14-day old rat embryo brain stem, facilitates locomotor-like hindlimb movements in spinal rats (spinal cord total transection between Th9 and Th10). 5-HT7 and 5-HT2 serotonin receptor antagonists blocked the locomotor-like hindlimb movements that had been restored in spinal rats grafted with embryonic serotoninergic cells. The aim of the present study was to examine the influence of spinal cord total transection and transplantation of serotonin neurons isolated from the 14-day old rat embryo brain stem on changes in expression of genes encoding 5-HT2A, 5-HT2C and 5-HT7 serotonin receptors in populations of motoneurons innervating tibialis anterior, gastrocnemius lateralis, and extensor caudae medialis muscles. METHODS: For motoneurons labeling a method of retrograde staining using intra muscle injection with cholera toxin B subunit conjugated with Alexa Fluor 555 was used. Motoneurons were then collected by using the laser capture micro-dissection method, and changes in expression of genes encoding serotonin receptors were analyzed by Real-time PCR. RESULTS: The results show that total spinal cord transection changed expression of genes encoding 5-HT2A, 5-HT2C and 5-HT7 serotonin receptors in ankle flexor and ankle and tail extensor muscles. Grafting of serotonin neurons reverses the effects of spinal cord injury on expression of these genes. CONCLUSION: This is the first demonstration that grafts of serotonergic neurons can reverse changes in gene expression in motoneurons produced by spinal cord injury.
The effect of stimuli predicting danger (DS) and safety (SS) in Pavlovian aversive conditioning on hippocampal local field potentials (LFP) was studied in 25 partially restrained adult male rats (Long-Evans). DS lasting 5 s preceded tail-shock, while SS overlapping DS during DS last 3 s predicted omission of shock. The power spectra of LFPs during trials were analyzed in theta and delta frequency bands. In DS, theta frequency during the last 3 s was lower that in first 2 s. In danger and safety situation theta peak frequency was different for dorsal CA1 activity (5.99 Hz vs. 6.86 Hz, respectively), while delta peak frequency was different for ventral CA1 (1.56 Hz vs. 1.07 Hz) for the last 3 s of trial. Differences in theta frequency in danger and safety situation may reflect differences in sensory processing during induced emotional states and/ or related differences in motor behavior.
Lateral hemisection of the spinal cord at the low thoracic level in rats causes severe deterioration of hindlimb locomotor movements followed by the substantial improvements of locomotor functions. However the rate and the level of this improvement remain disputable. In this study we investigated the time course of locomotor recovery analyzing spatial indices of locomotion obtained with CatWalk Gait Analysis System. The animals started to be tested in the CatWalk System two weeks after the injury, when hindlimb plantar stepping recovered. Within first 2 weeks hindlimb locomotor function recovered substantially, and the analyzed locomotor indices reached plateau about one month after injury. Nevertheless, most of the indices, like speed of locomotion, hindlimb base of support, hindlimb abduction did not reached the level obtained before the injury. Within next few months some of them remained at the same level, but 5 months after the hemisection locomotion again started to deteriorate, as was manifested by decrease of locomotor velocity and increase of hindlimb base of support. This study shows that after lateral hemisection of the spinal cord at the low thoracic level the recovery of locomotor functions is limited and that 5 months after the injury the secondary deterioration of locomotion is observed.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.