PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 2 |

Tytuł artykułu

The effects of leptin on F-actin remodelling in type 1 diabetes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The aim of the current study is to investigate the effect of leptin on cytoskeleton structures in both in vivo and in vitro model of diabetes. Materials and methods: For in vivo studies, leptin in different doses (240, and 480 mg/kg) was injected to the diabetic rats after 1-week of streptozotocin (STZ, 55 mg/kg) treatment. Leptin levels were analysed in serum, liver, and pancreas samples. Hepatic and pancreatic F- and G-actin expressions were determined by Western blotting. For in vitro studies, hepatic and pancreatic primary cell lines were obtained from the control rats. To these cultures, STZ (15 and 30 mM), leptin (50, 60 and 100 ng/mL), and their combinations were applied for 1, 3, and 4 weeks. After the treatment period, F-actin was visualised by the Alexa-fluor fluorescent dye. Results: Streptozotocin decreased the G-actin in both tissues in vivo. However, leptin caused a dose-dependent increase in G-actin levels while F-actin decreased in both tissues. Moreover, leptin caused the perimembranous condensation of actin filaments and amelioration of F-actin structures in vivo. A dose-dependent corruption of F-actin filament structures was observed in leptin-treated primary cells in vitro, while STZ also caused corruption of these filaments. Co-exposure of STZ and leptin caused the amelioration of F-actin filaments, while the perimembranous condensation was also observed as was in vivo study. Conclusions: Leptin therapy could be a candidate for diabetes, but it should not be ruled out as being important the severity of diabetes and leptin doses. (Folia Morphol 2019; 78, 2: 314–324)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

2

Opis fizyczny

p.314–324,fig.,ref.

Twórcy

autor
  • Biophysics Department, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
autor
  • Biophysics Department, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
autor
  • Istanbul University, Turkey
autor
  • Istanbul University, Turkey

Bibliografia

  • 1. Arous C, Halban P. The skeleton in the closet: actin cytoskeletal remodeling in b-cell function. Am J Physiol Endocrinol Metab. 2015; 309(7): E611–E620, doi: 10.1152/ajpendo.00268.2015.
  • 2. Beale EG. Insulin signaling and insulin resistance. J Investig Med. 2013; 61(1): 11–14, doi: 10.2310/JIM.0b013e3182746f95, indexed in Pubmed: 23111650.
  • 3. Ceddia RB, Koistinen HA, Zierath JR. Analysis of paradoxical observations on the association between leptin and insulin resistance. Faseb J. 2002; 16: 1163–1176.
  • 4. Chen PC, Kryukova YN, Shyng SL. Leptin regulates KATP channel trafficking in pancreatic b-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem. 2013; 288(47): 34098–34109, doi: 10.1074/jbc.M113.516880, indexed in Pubmed: 24100028.
  • 5. Considine R, Sinha M, Heiman M, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996; 334(5): 292–295, doi: 10.1056/nejm199602013340503.
  • 6. Cortés VA, Cautivo KM, Rong S. Leptin ameliorates insulin resistance and hepatic steatosis in Agpat2(−/−) lipodystrophic mice independent of hepatocyte leptin receptors. J Lipid Res. 2014; 55: 276–288.
  • 7. Coupe B, Grit I, Hulin P. Postnatal growth after intrauterine growth restriction alters central leptin signal and energy homeostasis. PLoS One. 2012; 7: e30616.
  • 8. Dehghany J, Hoboth P, Ivanova A, et al. A Spatial Model of Insulin-Granule Dynamics in Pancreatic b-Cells. Traffic. 2015; 16(8): 797–813, doi: 10.1111/tra.12286, indexed in Pubmed: 25809669.
  • 9. Denroche H, Quong W, Bruin J, et al. Leptin administration enhances islet transplant performance in diabetic mice. Diabetes. 2013; 62(8): 2738–2746, doi: 10.2337/db12-1684.
  • 10. Dominguez R, Holmes KC. Actin structure and function. Annu Rev Biophys. 2011; 40: 169–186, doi: 10.1146/annurev-biophys-042910-155359, indexed in Pubmed: 21314430.
  • 11. Emekli-Alturfan E, Kasikci E, Yarat A. Tissue factor activities of streptozotocin induced diabetic rat tissues and the effect of peanut consumption. Diabetes Metab Res Rev. 2007; 23(8): 653–658, doi: 10.1002/dmrr.757, indexed in Pubmed: 17595667.
  • 12. Fan F, Ji C, Wu Y, et al. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. J Clin Invest. 2015; 125(11): 4026–4041, doi: 10.1172/jci80652.
  • 13. Fan H, Patel VA, Longacre A. J.S. Levine, Abnormal regulation of the cytoskeletal regulator Rho typifies macrophages of the major murine models of spontaneous autoimmunity, J Leukoc Biol. 2006; 79: 155–165.
  • 14. Fofana B, Yao XH, Rampitsch C, et al. Prenatal alcohol exposure alters phosphorylation and glycosylation of proteins in rat offspring liver. Proteomics. 2010; 10(3): 417–434, doi: 10.1002/pmic.200800969.
  • 15. Fujikawa T, Chuang JC, Sakata I, et al. Leptin therapy improves insulin-deficient type 1 diabetes by CNSdependent mechanisms in mice. Proc National Academy Scien. 2010; 107(40): 17391–17396, doi: 10.1073/pnas.1008025107.
  • 16. Ghantous CM, Azrak Z, Hanache S. Differential Role of Leptin and Adiponectin in Cardiovascular System. Int J Endocrinol. 2015; 2015: 534320.
  • 17. Guven C. The effect of Diazoxide on norepinephrineinduced cardiac hypertrophy, in vitro. Cell Mol Biol (Noisy-le-grand). 2018; 64(10): 50–54, doi: 10.14715/cmb/2018.64.10.8.
  • 18. Harvey J, Ashford MLJ. Leptin in the CNS: much more than a satiety signal. Neuropharmacology. 2003; 44(7): 845–854, indexed in Pubmed: 12726816.
  • 19. Hien TT, Turczyńska KM, Dahan D, et al. Elevated glucose levels promote contractile and cytoskeletal gene expression in vascular smooth muscle via rho/protein kinase c and actin polymerization. J Biol Chem. 2016; 291(7): 3552–3568, doi: 10.1074/jbc.M115.654384, indexed in Pubmed: 26683376.
  • 20. Ishii S, Kamegai J, Tamura H, et al. Role of ghrelin in streptozotocin-induced diabetic hyperphagia. Endocrinology. 2002; 143(12): 4934–4937, doi: 10.1210/en.2002-220612.
  • 21. Justice JD, Brannon PM. Synthesis of amylase by cultured rat pancreatic acinar cells: effects of antecedent diet. J Nutr. 1989; 119(5): 805–812, doi: 10.1093/jn/119.5.805, indexed in Pubmed: 2470881.
  • 22. Kalwat MA, Thurmond DC. Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet b cells. Exp Mol Med. 2013; 45: e37, doi: 10.1038/emm.2013.73, indexed in Pubmed: 23969997.
  • 23. Kaya ST, Bozdogan O, Ozarslan TO, et al. The protection of resveratrol and its combination with glibenclamide, but not berberine on the diabetic hearts against reperfusion-induced arrhythmias: the role of myocardial K channel. Arch Physiol Biochem. 2019; 125(2): 114–121, doi: 10.1080/13813455.2018.1440409, indexed in Pubmed: 29457517.
  • 24. Kelesidis T, Kelesidis I, Chou S. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Internal Med. 2010; 152: 93–100.
  • 25. Khatri N, Sagar A, Peddada N, et al. Plasma gelsolin levels decrease in diabetic state and increase upon treatment with F-actin depolymerizing versions of gelsolin. J Diabetes Res. 2014; 2014: 152075, doi: 10.1155/2014/152075, indexed in Pubmed: 25478578.
  • 26. Kim HR, Gallant C, Leavis PC. Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol. 2008; 295: C768–C778.
  • 27. King A. The use of animal models in diabetes research. Br J Pharmacol. 2012; 166(3): 877–894, doi: 10.1111/j.1476-5381.2012.01911.x.
  • 28. Klaunig J, Goldblatt P, Hinton D, et al. Mouse liver cell culture. In Vitro. 1981; 17(10): 926–934, doi: 10.1007/bf02618289.
  • 29. Kohler M, Aufderheide M, Ramm D. Method for the description of differences in the filamentous structure of the cytoskeleton in cultured cells. Toxicol Lett. 1994; 72(1-3): 33–42, indexed in Pubmed: 8202948.
  • 30. Le Drean G, Segain JP. Connecting metabolism to intestinal barrier function: The role of leptin. Tissue Barriers. 2014; 2: e970940.
  • 31. Londoño M, Tellez L, Gutierrez R. Physiological low doses of leptin and cholecystokinin induces body weight-loss in juvenile and lean, but not in adult-obese rats. Int J Peptide Res Therap. 2011; 18(1): 77–88, doi: 10.1007/s10989-011-9281-9.
  • 32. Lu QY, Jin YS, Zhang Q, et al. Ganoderma lucidum extracts inhibit growth and induce actin polymerization in bladder cancer cells in vitro. Cancer Lett. 2004; 216(1): 9–20, doi: 10.1016/j.canlet.2004.06.022, indexed in Pubmed: 15500944.
  • 33. Maria Z, Yin W, Rubenstein DA. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics. J Diabetes Investig. 2014; 5(4): 372–381, doi: 10.1111/jdi.12162, indexed in Pubmed: 25411596.
  • 34. Marroqui L, Gonzalez A, Neco P. Role of leptin in the pancreatic beta-cell: effects and signaling pathways. J Molec Endocrinol. 2012; 49: R9–17.
  • 35. Millioni R, Iori E, Puricelli L, et al. Abnormal cytoskeletal protein expression in cultured skin fibroblasts from type 1 diabetes mellitus patients with nephropathy: a proteomic approach. Proteomics Clin Appl. 2008; 2(4): 492–503, doi: 10.1002/prca.200780112, indexed in Pubmed: 21136853.
  • 36. Moon HS, Dalamaga M, Kim SY, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocrine Rev. 2013; 34(3): 377–412, doi: 10.1210/er.2012-1053.
  • 37. Naito M, Fujikura J, Ebihara K, et al. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes. 2011; 60(9): 2265–2273, doi: 10.2337/db10-1795, indexed in Pubmed: 21810600.
  • 38. Paz-Filho G, Mastronardi C, Wong ML, et al. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012; 16(9): 549–555, doi: 10.4103/2230-8210.105571.
  • 39. Rubenstein JH, Morgenstern H, McConell D, et al. Associations of diabetes mellitus, insulin, leptin, and ghrelin with gastroesophageal reflux and Barrett’s esophagus. Gastroenterology. 2013; 145(6): 1237–12344.e1, doi: 10.1053/j.gastro.2013.08.052, indexed in Pubmed: 23999171.
  • 40. Sah S, Singh B, Choudhary S, et al. Animal models of insulin resistance: A review. Pharmacological Reports. 2016; 68(6): 1165–1177, doi: 10.1016/j.pharep.2016.07.010.
  • 41. Shoji T, Nishizawa Y, Emoto M, et al. Renal function and insulin resistance as determinants of plasma leptin levels in patients with NIDDM. Diabetologia. 1997; 40(6): 676–679, doi: 10.1007/s001250050733, indexed in Pubmed: 9222647.
  • 42. Soetikno V, Sari FR, Veeraveedu PT, et al. Curcumin ameliorates macrophage infiltration by inhibiting NF-kB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond). 2011; 8(1): 35, doi: 10.1186/1743-7075-8-35, indexed in Pubmed: 21663638.
  • 43. Trevelin SC, Carlos D, Beretta M, et al. Diabetes mellitus and sepsis: A Challenging Association. Shock. 2017; 47(3): 276–287, doi: 10.1097/SHK.0000000000000778, indexed in Pubmed: 27787406.
  • 44. Tucholski K, Otto-Buczkowska E. The role of leptin in the regulation of carbohydrate metabolism. Endokrynol Pol. 2011; 62: 258–262.
  • 45. Uzdensky A, Kolpakova E, Juzeniene A, et al. The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells. Biochim Biophys Acta. 2005; 1722(1): 43–50, doi: 10.1016/j.bbagen.2004.11.011.
  • 46. Visa N, Percipalle P. Nuclear functions of actin. Cold Spring Harb Perspect Biol. 2010; 2(4): a000620, doi: 10.1101/cshperspect.a000620, indexed in Pubmed: 20452941.
  • 47. Wagoner B, Hausman DB, Harris RBS. Direct and indirect effects of leptin on preadipocyte proliferation and differentiation. Am J Physiol Regul Integr Comp Physiol. 2006; 290(6): R1557–R1564, doi: 10.1152/ajpregu.00860.2005, indexed in Pubmed: 16424081.
  • 48. Wang X, Tang P, Guo F, et al. RhoA regulates Activin B-induced stress fiber formation and migration of bone marrow-derived mesenchymal stromal cell through distinct signaling. Biochim Biophys Acta Gen Subj. 2017; 1861(1 Pt A): 3011–3018, doi: 10.1016/j.bbagen.2016.09.027, indexed in Pubmed: 27693126.
  • 49. Widjaja A, Stratton IM, Horn R, et al. UKPDS 20: plasma leptin, obesity, and plasma insulin in type 2 diabetic subjects. J Clin Endocrinol Metab. 1997; 82(2): 654–657, doi: 10.1210/jc.82.2.654.
  • 50. Yu M, Yuan X, Lu C, et al. mDia1 senses both force and torque during F-actin filament polymerization. Nature Communications. 2017; 8: 1650.
  • 51. Zhu X, Hu R, Brissova M, et al. Microtubules negatively regulate insulin secretion in pancreatic b cells. Developmental Cell. 2015; 34(6): 656–668, doi: 10.1016/j.devcel.2015.08.020.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c6ff8962-15c5-432c-aeb2-6c047838bd12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.