PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 2 |

Tytuł artykułu

The effect of prolonged formalin fixation on the staining characteristics of archival human brain tissue

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Neurodegenerative disorders include wide range of conditions, which affect millions of people worldwide. Unfortunately, they are incurable and irreversibly progressive. Immunohistochemical staining of paraffin-fixed tissues for both diagnostic and research purposes are widely used. However, large amount of brain tissues are fixed but little is known about whether they are suitable for retrospective studies. The study aimed at investigating the effects of prolonged formalin fixation time on immunohistochemical expression of some common neurodegenerative markers in archival brain specimens. Materials and methods: Twenty brain specimens were obtained from human cadavers in the Anatomy Department of King Abdulaziz University that were prefixed in 10% formalin. They were divided into two equal groups according to time of fixation: group 1 — less than 1 year, group 2 — up to 20 years. Histological examination of white and grey matter was done using haematoxylin and eosin, luxol fast blue (LFB) for myelin staining, Congo red for amyloid plaques, CD 68 for microglial cells, tenascin-C (large extracellular matrix glycoprotein) and caspase 3 antibody for apoptotic cells. Results: For both groups, corpus callosum sections displayed myelination with LFB staining. The distribution of CD 68 positive microglial cells was evident in frontal and temporal grey matter, but not in corpus callosum sections. Strongly positive masses were seen in Congo red-stained frontal and temporal sections. Anti-caspase 3 immunostaining revealed positively stained neurons. Conclusions: Histological and immunohistochemical techniques yielded reproducible staining results when applied to human brain tissue stored in formalin for long periods; so they can be used in well preserved biobank material which are the most targeting research areas in neuropathology. (Folia Morphol 2019; 78, 2: 230–236)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

2

Opis fizyczny

p.230–236,fig.,ref.

Twórcy

autor
  • Department of Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
  • Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
  • Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Bibliografia

  • 1. Alafuzoff I, Pikkarainen M, Al-Sarraj S, et al. Interlaboratory comparison of assessments of Alzheimer disease-related lesions: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol. 2006; 65(8): 740–757, doi: 10.1097/01.jnen.0000229986.17548.27, indexed in Pubmed: 16896308.
  • 2. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological Stains: A Literature Review and Case Study. Glob J Health Sci. 2015; 8(3): 72–79, doi: 10.5539/gjhs.v8n3p72, indexed in Pubmed: 26493433.
  • 3. Ando Y, Haraoka K, Terazaki H, et al. A novel tool for detecting amyloid deposits in systemic amyloidosis in vitro and in vivo. Lab Invest. 2003; 83(12): 1751–1759, doi: 10.1097/01.lab.0000101701.87433.c5.
  • 4. Arber D. Effect of prolonged formalin fixation on the immunohistochemical reactivity of breast markers. Appl Immunohistochem Mol Morphol. 2002; 10(2): 183–186, doi: 10.1097/00129039-200206000-00015.
  • 5. Carriel V, Campos A, Alaminos M, et al. Staining Methods for Normal and Regenerative Myelin in the Nervous System. Methods Mol Biol. 2017; 1560: 207–218, doi: 10.1007/978-1-4939-6788-9_15, indexed in Pubmed: 28155156.
  • 6. Clement CG, Truong LD. An evaluation of congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol. 2014; 45(8): 1766–1772.
  • 7. Evers P, Uylings H. An optimal antigen retrieval method suitable for different antibodies on human brain tissue stored for several years in formaldehyde fixative. J Neurosci Methods. 1997; 72(2): 197–207, doi: 10.1016/s0165-0270(96)02204-2.
  • 8. Fox CH, Johnson FB, Whiting J, et al. Formaldehyde fixation. J Histochem Cytochem. 1985; 33(8): 845–853, doi: 10.1177/33.8.3894502, indexed in Pubmed: 3894502.
  • 9. Grillo F, Pigozzi S, Ceriolo P, et al. Factors affecting immunoreactivity in long-term storage of formalin-fixed paraffin-embedded tissue sections. Histochem Cell Biol. 2015; 144(1): 93–99, doi: 10.1007/s00418-015-1316-4, indexed in Pubmed: 25757745.
  • 10. Herold-Mende C, Mueller MM, Bonsanto MM, et al. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int J Cancer. 2002; 98(3): 362–369, indexed in Pubmed: 11920587.
  • 11. Holness CL, Simmons DL. Molecular cloning of cd68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993; 81(6): 1607–1613.
  • 12. Klüver H, Barrera E. A Method for the Combined Staining of Cells and Fibers in the Nervous System. J Neuropathol Exp Neurol. 1953; 12(4): 400–403, doi: 10.1097/00005072-195312040-00008.
  • 13. Lee Y, McKinnon PJ. Detection of apoptosis in the central nervous system. Methods Mol Biol. 2009; 559: 273–282, doi: 10.1007/978-1-60327-017-5_19, indexed in Pubmed: 19609763.
  • 14. Leins A, Riva P, Lindstedt R, et al. Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer. 2003; 98(11): 2430–2439, doi: 10.1002/cncr.11796, indexed in Pubmed: 14635078.
  • 15. Machaalani R, Radford JL, Waters KA. Tissue fixation effects on immunohistochemical staining of caspase-3 in brain tissue. Appl Immunohistochem Mol Morphol. 2007; 15(4): 463–470, doi: 10.1097/01.pai.0000213150.56687.78, indexed in Pubmed: 18091392.
  • 16. Mason JT, O’Leary TJ. Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation. J Histochem Cytochem. 1991; 39(2): 225–229, doi: 10.1177/39.2.1987266, indexed in Pubmed: 1987266.
  • 17. Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009; 3(3-4): 287–310, doi: 10.1007/s12079-009-0075-1, indexed in Pubmed: 19838819.
  • 18. Midwood KS, Hussenet T, Langlois B, et al. Advances in tenascin-C biology. Cell Mol Life Sci. 2011; 68(19): 3175–3199, doi: 10.1007/s00018-011-0783-6, indexed in Pubmed: 21818551.
  • 19. Pikkarainen M, Martikainen P, Alafuzoff I. The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J Neuropathol Exp Neurol. 2010; 69(1): 40–52, doi: 10.1097/NEN.0b013e3181c6c13d, indexed in Pubmed: 20010304.
  • 20. Ploeger S, Guldemond JM, Feirabend HK, et al. Acidification of human brains stored in fixatives. Eur J Morphol. 1993; 31(4): 286–290.
  • 21. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999; 6(2): 99–104, doi: 10.1038/sj.cdd.4400476, indexed in Pubmed: 10200555.
  • 22. Sheaffer S, Rosoklija G, Dwork AJ. Myelin staining of archival brain tissue. Clin Neuropathol. 1999; 18(6): 313–317.
  • 23. Smith EE. Cerebral amyloid angiopathy as a cause of neurodegeneration. J Neurochem. 2018; 144(5): 651–658, doi: 10.1111/jnc.14157, indexed in Pubmed: 28833176.
  • 24. Stankov A, Belakaposka-Srpanova V, Bitoljanu N, et al. Visualisation of Microglia with the use of Immunohistochemical Double Staining Method for CD-68 and Iba-1 of Cerebral Tissue Samples in Cases of Brain Contusions. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2015; 36(2): 141–145, doi: 10.1515/prilozi-2015-0062, indexed in Pubmed: 27442380.
  • 25. Sun Y, Xu Y, Geng L. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction. Exp Ther Med. 2015; 10(1): 133–138, doi: 10.3892/etm.2015.2462, indexed in Pubmed: 26170924.
  • 26. Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther. 2015; 7(1): 56, doi: 10.1186/s13195-015-0139-9, indexed in Pubmed: 26286145.
  • 27. Webster JD, Miller MA, Dusold D, et al. Effects of prolonged formalin fixation on diagnostic immunohistochemistry in domestic animals. J Histochem Cytochem. 2009; 57(8): 753–761, doi: 10.1369/jhc.2009.953877, indexed in Pubmed: 19398606.
  • 28. Weickenmeier J, de Rooij R, Budday S, et al. Brain stiffness increases with myelin content. Acta Biomater. 2016; 42: 265–272, doi: 10.1016/j.actbio.2016.07.040, indexed in Pubmed: 27475531.
  • 29. Wiese S, Karus M, Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol. 2012; 3: 120, doi: 10.3389/fphar.2012.00120, indexed in Pubmed: 22740833.
  • 30. Wilcock DM, Gordon MN. Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with congo red histochemical stain. Nat Protoc. 2006; 1(3): 1591–1595.
  • 31. Williams JH, Mepham BL, Wright DH. Tissue preparation for immunocytochemistry. J Clin Pathol. 1997; 50(5): 422–428, doi: 10.1136/jcp.50.5.422.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a0e078c8-050f-4f2c-8ddb-110536dd7080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.